scholarly journals Bioactive Peptides Produced by Cyanobacteria of the Genus Nostoc: A Review

Marine Drugs ◽  
2019 ◽  
Vol 17 (10) ◽  
pp. 561 ◽  
Author(s):  
Anna Fidor ◽  
Robert Konkel ◽  
Hanna Mazur-Marzec

Cyanobacteria of the genus Nostoc are widespread in all kinds of habitats. They occur in a free-living state or in association with other organisms. Members of this genus belong to prolific producers of bioactive metabolites, some of which have been recognized as potential therapeutic agents. Of these, peptides and peptide-like structures show the most promising properties and are of a particular interest for both research laboratories and pharmaceutical companies. Nostoc is a sole source of some lead compounds such as cytotoxic cryptophycins, antiviral cyanovirin-N, or the antitoxic nostocyclopeptides. Nostoc also produces the same bioactive peptides as other cyanobacterial genera, but they frequently have some unique modifications in the structure. This includes hepatotoxic microcystins and potent proteases inhibitors such as cyanopeptolins, anabaenopeptins, and microginins. In this review, we described the most studied peptides produced by Nostoc, focusing especially on the structure, the activity, and a potential application of the compounds.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Carlos E. Salas ◽  
Jesus A. Badillo-Corona ◽  
Guadalupe Ramírez-Sotelo ◽  
Carmen Oliver-Salvador

Bioactive peptides are part of an innate response elicited by most living forms. In plants, they are produced ubiquitously in roots, seeds, flowers, stems, and leaves, highlighting their physiological importance. While most of the bioactive peptides produced in plants possess microbicide properties, there is evidence that they are also involved in cellular signaling. Structurally, there is an overall similarity when comparing them with those derived from animal or insect sources. The biological action of bioactive peptides initiates with the binding to the target membrane followed in most cases by membrane permeabilization and rupture. Here we present an overview of what is currently known about bioactive peptides from plants, focusing on their antimicrobial activity and their role in the plant signaling network and offering perspectives on their potential application.


mSystems ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Kaori Motoki ◽  
Tomo-o Watsuji ◽  
Yoshihiro Takaki ◽  
Ken Takai ◽  
Wataru Iwasaki

ABSTRACT Shinkaia crosnieri is an invertebrate that inhabits an area around deep-sea hydrothermal vents in the Okinawa Trough in Japan by harboring episymbiotic microbes as the primary nutrition. To reveal physiology and phylogenetic composition of the active episymbiotic populations, metatranscriptomics is expected to be a powerful approach. However, this has been hindered by substantial perturbation (e.g., RNA degradation) during time-consuming retrieval from the deep sea. Here, we conducted direct metatranscriptomic analysis of S. crosnieri episymbionts by applying in situ RNA stabilization equipment. As expected, we obtained RNA expression profiles that were substantially different from those obtained by conventional metatranscriptomics (i.e., stabilization after retrieval). The episymbiotic community members were dominated by three orders, namely, Thiotrichales, Methylococcales, and Campylobacterales, and the Campylobacterales members were mostly dominated by the Sulfurovum genus. At a finer phylogenetic scale, the episymbiotic communities on different host individuals shared many species, indicating that the episymbionts on each host individual are not descendants of a few founder cells but are horizontally exchanged. Furthermore, our analysis revealed the key metabolisms of the community: two carbon fixation pathways, a formaldehyde assimilation pathway, and utilization of five electron donors (sulfide, thiosulfate, sulfur, methane, and ammonia) and two electron accepters (oxygen and nitrate/nitrite). Importantly, it was suggested that Thiotrichales episymbionts can utilize intercellular sulfur globules even when sulfur compounds are not usable, possibly also in a detached and free-living state. IMPORTANCE Deep-sea hydrothermal vent ecosystems remain mysterious. To depict in detail the enigmatic life of chemosynthetic microbes, which are key primary producers in these ecosystems, metatranscriptomic analysis is expected to be a promising approach. However, this has been hindered by substantial perturbation (e.g., RNA degradation) during time-consuming retrieval from the deep sea. In this study, we conducted direct metatranscriptome analysis of microbial episymbionts of deep-sea squat lobsters (Shinkaia crosnieri) by applying in situ RNA stabilization equipment. Compared to conventional metatranscriptomics (i.e., RNA stabilization after retrieval), our method provided substantially different RNA expression profiles. Moreover, we discovered that S. crosnieri and its episymbiotic microbes constitute complex and resilient ecosystems, where closely related but various episymbionts are stably maintained by horizontal exchange and partly by their sulfur storage ability for survival even when sulfur compounds are not usable, likely also in a detached and free-living state.


1998 ◽  
Vol 64 (8) ◽  
pp. 2859-2863 ◽  
Author(s):  
Shahid N. Chohan ◽  
Les Copeland

ABSTRACT Biochemical controls that regulate the biosynthesis of poly-3-hydroxybutyrate (PHB) were investigated in Rhizobium(Cicer) sp. strain CC 1192. This species is of interest for studying PHB synthesis because the polymer accumulates to a large extent in free-living cells but not in bacteroids during nitrogen-fixing symbiosis with chickpea (Cicer arietinumL.) plants. Evidence is presented that indicates that CC 1192 cells retain the enzymic capacity to synthesize PHB when they differentiate from the free-living state to the bacteroid state. This evidence includes the incorporation by CC 1192 bacteroids of radiolabel from [14C]malate into 3-hydroxybutyrate which was derived by chemically degrading insoluble material from bacteroid pellets. Furthermore, the presence of an NADPH-dependent acetoacetyl coenzyme A (CoA) reductase, which was specific forR-(−)-3-hydroxybutyryl-CoA and NADP+ in the oxidative direction, was demonstrated in extracts from free-living and bacteroid cells of CC 1192. Activity of this enzyme in the reductive direction appeared to be regulated at the biochemical level mainly by the availability of substrates. The CC 1192 cells also contained an NADH-specific acetoacetyl-CoA reductase which oxidizedS-(+)-3-hydroxybutyryl-CoA. A membrane preparation from CC 1192 bacteroids readily oxidized NADH but not NADPH, which is suggested to be a major source of reductant for nitrogenase. Thus, a high ratio of NADPH to NADP+, which could enhance delivery of reductant to nitrogenase, could also favor the reduction of acetoacetyl-CoA for PHB synthesis. This would mean that fine controls that regulate the partitioning of acetyl-CoA between citrate synthase and 3-ketothiolase are important in determining whether PHB accumulates.


2015 ◽  
Vol 112 (6) ◽  
pp. 1862-1867 ◽  
Author(s):  
Anton Liaimer ◽  
Eric J. N. Helfrich ◽  
Katrin Hinrichs ◽  
Arthur Guljamow ◽  
Keishi Ishida ◽  
...  

Nostoc punctiformeis a versatile cyanobacterium that can live either independently or in symbiosis with plants from distinct taxa. Chemical cues from plants andN. punctiformewere shown to stimulate or repress, respectively, the differentiation of infectious motile filaments known as hormogonia. We have used a polyketide synthase mutant that accumulates an elevated amount of hormogonia as a tool to understand the effect of secondary metabolites on cellular differentiation ofN. punctiforme. Applying MALDI imaging to illustrate the reprogramming of the secondary metabolome, nostopeptolides were identified as the predominant difference in thepks2−mutant secretome. Subsequent differentiation assays and visualization of cell-type-specific expression of nostopeptolides via a transcriptional reporter strain provided evidence for a multifaceted role of nostopeptolides, either as an autogenic hormogonium-repressing factor or as a chemoattractant, depending on its extracellular concentration. Although nostopeptolide is constitutively expressed in the free-living state, secreted levels dynamically change before, during, and after the hormogonium differentiation phase. The metabolite was found to be strictly down-regulated in symbiosis withGunnera manicataandBlasia pusilla, whereas other metabolites are up-regulated, as demonstrated via MALDI imaging, suggesting plants modulate the fine-balanced cross-talk network of secondary metabolites withinN. punctiforme.


1991 ◽  
Vol 19 (3) ◽  
pp. 636-644 ◽  
Author(s):  
T. Lynne Reuber ◽  
Jason Reed ◽  
Jane Glazebrook ◽  
M. Alexandra Glucksmann ◽  
Dianne Ahmann ◽  
...  

Summary Genetic experiments have indicated that succinoglycan (EPS I), the acidic Calcofluor-binding exopolysaccharide, of the nitrogen-fixing bacterium Rhizobium meliloti strain Rm1021 is required for nodule invasion and possibly for later events in nodule development on alfalfa and other hosts. Fourteen exo loci on the second megaplasmid have been identified that are required for, or affect, the synthesis of EPS I. Mutations in certain of these loci completely abolish the production of EPS I and result in mutants that form empty Fix- nodules. We have identified two loci, exoR and exoS, that are involved in the regulation of EPS I synthesis in the free-living state. Certain exo mutations which completely abolish EPS I production are lethal in an exoR95 or exoS96 background. Histochemical analyses of the expression of exo genes during nodulation using exo :: TnphoA fusions have indicated that the exo genes are expressed most strongly in the invasion zone. In addition, we have discovered that R. meliloti has a latent capacity to synthesize a second exopolysaccharide (EPS II) that can substitute for the role(s) of EPS I in nodulation of alfalfa but not of other hosts. Possible roles for exopolysaccharides in symbiosis are discussed.


1998 ◽  
Vol 180 (19) ◽  
pp. 5070-5076 ◽  
Author(s):  
Karine Mandon ◽  
Nathalie Michel-Reydellet ◽  
Sergio Encarnación ◽  
P. Alexandre Kaminski ◽  
Alfonso Leija ◽  
...  

ABSTRACT Azorhizobium caulinodans is able to fix nitrogen in the free-living state and in symbiosis with the tropical legumeSesbania rostrata. The bacteria accumulate poly-β-hydroxybutyrate (PHB) under both conditions. The structural gene for PHB synthase, phbC, was inactivated by insertion of an interposon. The mutant strains obtained were devoid of PHB, impaired in their growth properties, totally devoid of nitrogenase activity ex planta (Nif−), and affected in nucleotide pools and induced Fix− nodules devoid of bacteria. The Nif− phenotype was the consequence of the lack ofnifA transcription. Nitrogenase activity was partially restored to a phbC mutant by constitutive expression of thenifA gene. However, this constitutive nifAexpression had no effect on the nucleotide content or on growth of thephbC mutant. It is suggested that PHB is required for maintaining the reducing power of the cell and therefore the bacterial growth. These observations also suggest a new control ofnifA expression to adapt nitrogen fixation to the availability of carbon and reducing equivalents.


2002 ◽  
Vol 76 (1) ◽  
pp. 45-52 ◽  
Author(s):  
E.P. Masler

AbstractAminopeptidase activities were detected in extracts of the free-living nematodesCaenorhabditis elegansandPanagrellus redivivususing the aminoacyl substrate L-alanine-4-nitroanilide. The activities exhibited similarities in Km (C.elegans= 2.22 mM;P.REDIVIVUS= 2.09 Mm) and specific activity (C.elegans=1.38±0.43 mAU min-1 μg-1;P. redivivus, 1.23±0.18 mAU min-1 μg-1). Each is inhibited competitively by amastatin (C. elegansIC50=0.46 μm;P. redivivusIC50=15.90 μm) and non-competitively by leuhistin (C. elegansIC50=3.00 μm;P. redivivusIC50=37.35 μm). The bioactive peptides adipokinetic hormone and substance P decrease the apparent aminopeptidase activities of each extract suggesting that the peptides compete with the Ala-pNA as substrates. With each extract, adipokinetic hormone appeared to be the more effective substrate. Digestion of adipokinetic hormone byC. elegansandP. redivivusextracts in the presence and absence of 1 mm amastatin produced distinct chromatographic profiles that suggest different digestion patterns for the two species. However, amastatin had clear effects on chromatographic profiles from each species indicating that an aminopeptidase is involved in the digestion of the peptide substrates. The data presented indicate that extracts of free-living nematodes are capable of metabolizing peptide hormones, and that this metabolism involves substrate-selective aminopeptidases.


Sign in / Sign up

Export Citation Format

Share Document