scholarly journals Cloning and Characterization of a New β-Galactosidase from Alteromonas sp. QD01 and Its Potential in Synthesis of Galacto-Oligosaccharides

Marine Drugs ◽  
2020 ◽  
Vol 18 (6) ◽  
pp. 312 ◽  
Author(s):  
Dandan Li ◽  
Shangyong Li ◽  
Yanhong Wu ◽  
Mengfei Jin ◽  
Yu Zhou ◽  
...  

As prebiotics, galacto-oligosaccharides (GOSs) can improve the intestinal flora and have important applications in medicine. β-galactosidases could promote the synthesis of GOSs in lactose and catalyze the hydrolysis of lactose. In this study, a new β-galactosidase gene (gal2A), which belongs to the glycoside hydrolase family 2, was cloned from marine bacterium Alteromonas sp. QD01 and expressed in Escherichia coli. The molecular weight of Gal2A was 117.07 kDa. The optimal pH and temperature of Gal2A were 8.0 and 40 °C, respectively. At the same time, Gal2A showed wide pH stability in the pH range of 6.0–9.5, which is suitable for lactose hydrolysis in milk. Most metal ions promoted the activity of Gal2A, especially Mn2+ and Mg2+. Importantly, Gal2A exhibited high transglycosylation activity, which can catalyze the formation of GOS from milk and lactose. These characteristics indicated that Gal2A may be ideal for producing GOSs and lactose-reducing dairy products.

2005 ◽  
Vol 388 (3) ◽  
pp. 949-957 ◽  
Author(s):  
Masashi KIYOHARA ◽  
Keishi SAKAGUCHI ◽  
Kuniko YAMAGUCHI ◽  
Toshiyoshi ARAKI ◽  
Takashi NAKAMURA ◽  
...  

We cloned a novel β-1,3-xylanase gene, consisting of a 1728-bp open reading frame encoding 576 amino acid residues, from a marine bacterium, Vibrio sp. strain AX-4. Sequence analysis revealed that the β-1,3-xylanase is a modular enzyme composed of a putative catalytic module belonging to glycoside hydrolase family 26 and two putative carbohydrate-binding modules belonging to family 31. The recombinant enzyme hydrolysed β-1,3-xylan to yield xylo-oligosaccharides with different numbers of xylose units, mainly xylobiose, xylotriose and xylotetraose. However, the enzyme did not hydrolyse β-1,4-xylan, β-1,4-mannan, β-1,4-glucan, β-1,3-xylobiose or p-nitrophenyl-β-xyloside. When β-1,3-xylo-oligosaccharides were used as the substrate, the kcat value of the enzyme for xylopentaose was found to be 40 times higher than that for xylotetraose, and xylotriose was extremely resistant to hydrolysis by the enzyme. A PSI-BLAST search revealed two possible catalytic Glu residues (Glu-138 as an acid/base catalyst and Glu-234 as a nucleophile), both of which are generally conserved in glycoside hydrolase superfamily A. Replacement of these two conserved Glu residues with Asp and Gln resulted in a significant decrease and complete loss of enzyme activity respectively, without a change in their CD spectra, suggesting that these Glu residues are the catalytic residues of β-1,3-xylanase. The present study also clearly shows that the non-catalytic putative carbohydrate-binding modules play an important role in the hydrolysis of insoluble β-1,3-xylan, but not that of soluble glycol-β-1,3-xylan. Furthermore, repeating a putative carbohydrate-binding module strongly enhanced the hydrolysis of the insoluble substrate.


2010 ◽  
Vol 9 (11) ◽  
pp. 1650-1660 ◽  
Author(s):  
Encarnación Dueñas-Santero ◽  
Ana Belén Martín-Cuadrado ◽  
Thierry Fontaine ◽  
Jean-Paul Latgé ◽  
Francisco del Rey ◽  
...  

ABSTRACT In yeast, enzymes with β-glucanase activity are thought to be necessary in morphogenetic events that require controlled hydrolysis of the cell wall. Comparison of the sequence of the Saccharomyces cerevisiae exo-β(1,3)-glucanase Exg1 with the Schizosaccharomyces pombe genome allowed the identification of three genes that were named exg1 + (locus SPBC1105.05), exg2 + (SPAC12B10.11), and exg3 + (SPBC2D10.05). The three proteins have different localizations: Exg1 is secreted to the periplasmic space, Exg2 is a membrane protein, and Exg3 is a cytoplasmic protein. Characterization of the biochemical activity of the proteins indicated that Exg1 and Exg3 are active only against β(1,6)-glucans while no activity was detected for Exg2. Interestingly, Exg1 cleaves the glucans with an endohydrolytic mode of action. exg1 + showed periodic expression during the cell cycle, with a maximum coinciding with the septation process, and its expression was dependent on the transcription factor Sep1. The Exg1 protein localizes to the septum region in a pattern that was different from that of the endo-β(1,3)-glucanase Eng1. Overexpression of Exg2 resulted in an increase in cell wall material at the poles and in the septum, but the putative catalytic activity of the protein was not required for this effect.


2017 ◽  
Vol 89 (4) ◽  
pp. 463-472 ◽  
Author(s):  
Ruijun Wang ◽  
Zhengchu Liu ◽  
Lifeng Cheng ◽  
Shengwen Duan ◽  
Xiangyuan Feng ◽  
...  

Xylanase plays an important role in the hydrolysis of hemicellulose and has gained much attention in the field of biological degumming. The research for xylanases with cellulase-free and high activity for biological degumming has intensified in recent years. In the present research, heterologous expression of a novel endo-β-1,4-xylanase (GH30) from Dickeya dadantii DCE-01 in Escherichia coli BL21 (DE3) was reported. Biochemical characterization of the enzyme and a potential application in ramie biological degumming was discussed. The results showed that the xylanase gene consists of 1251 nucleotides, belonging to glycoside hydrolase family 30 (GH30). The optimal activity of the xylanase was observed at 50℃ and a pH value of 6.4. The Km and Vmax values for beechwood xylan were 14.25 mg/mL and 296.6 μmol/mg, respectively. The catalytic activity was enhanced by addition of 1 mM Cu2+, Ca2+, Mg2+, and K+. The recombinant enzyme was specific for xylan substrates. The enzyme exhibited hydrolytic activity toward ramie hemicellulose. The recombinant xylanase could be effectively applied to ramie degumming.


2006 ◽  
Vol 72 (9) ◽  
pp. 6399-6401 ◽  
Author(s):  
Jinhua Dong ◽  
Shinnosuke Hashikawa ◽  
Takafumi Konishi ◽  
Yutaka Tamaru ◽  
Toshiyoshi Araki

ABSTRACT The β-agarase C gene (agaC) of a marine bacterium, Vibrio sp. strain PO-303, consisted of 1,437 bp encoding 478 amino acid residues. β-Agarase C was identified as the first β-agarase that cannot hydrolyze neoagarooctaose and smaller neoagarooligosaccharides and was assigned to a novel glycoside hydrolase family.


Marine Drugs ◽  
2018 ◽  
Vol 16 (12) ◽  
pp. 469 ◽  
Author(s):  
Jingjing Sun ◽  
Congyu Yao ◽  
Wei Wang ◽  
Zhiwei Zhuang ◽  
Junzhong Liu ◽  
...  

The bacterium Alteromonas sp. ML52, isolated from deep-sea water, was found to synthesize an intracellular cold-adapted β-galactosidase. A novel β-galactosidase gene from strain ML52, encoding 1058 amino acids residues, was cloned and expressed in Escherichia coli. The enzyme belongs to glycoside hydrolase family 2 and is active as a homotetrameric protein. The recombinant enzyme had maximum activity at 35 °C and pH 8 with a low thermal stability over 30 °C. The enzyme also exhibited a Km of 0.14 mM, a Vmax of 464.7 U/mg and a kcat of 3688.1 S−1 at 35 °C with 2-nitrophenyl-β-d-galactopyranoside as a substrate. Hydrolysis of lactose assay, performed using milk, indicated that over 90% lactose in milk was hydrolyzed after incubation for 5 h at 25 °C or 24 h at 4 °C and 10 °C, respectively. These properties suggest that recombinant Alteromonas sp. ML52 β-galactosidase is a potential biocatalyst for the lactose-reduced dairy industry.


Sign in / Sign up

Export Citation Format

Share Document