scholarly journals Composite Anion-Exchange Membrane Fabricated by UV Cross-Linking Vinyl Imidazolium Poly(Phenylene Oxide) with Polyacrylamides and Their Testing for Use in Redox Flow Batteries

Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 436
Author(s):  
Martyna Charyton ◽  
Cristina Iojoiu ◽  
Peter Fischer ◽  
Gerard Henrion ◽  
Mathieu Etienne ◽  
...  

Composite anion-exchange membranes (AEMs) consisting of a porous substrate and a vinyl imidazolium poly(phenylene oxide) (VIMPPO)/acrylamide copolymer layer were fabricated in a straightforward process, for use in redox flow batteries. The porous substrate was coated with a mixture of VIMPPO and acrylamide monomers, then subsequently exposed to UV irradiation, in order to obtain a radically cured ion-exchange coating. Combining VIMPPO with low-value reagents allowed to significantly reduce the amount of synthesized ionomer used to fabricate the mem- brane down to 15%. Varying the VIMPPO content also allowed tuning the ionic transport properties of the resulting AEM. A series of membranes with different VIMPPO/acrylamides ratios were prepared to assess the optimal composition by studying the changes of membranes properties—water uptake, area resistivity, permeability, and chemical stability. Characterization of the membranes was followed by cycling experiments in a vanadium RFB (VRFB) cell. Among three composite membranes, the one with VIMPPO 15% w/w—reached the highest energy efficiency (75.1%) matching the performance of commercial ion-exchange membranes (IEMs) used in VRFBs (Nafion® N 115: 75.0% and Fumasep® FAP 450: 73.0%). These results showed that the proposed composite AEM, fabricated in an industrially oriented process, could be considered to be a lower-cost alternative to the benchmarked IEMs.

2018 ◽  
Vol 378 ◽  
pp. 338-344 ◽  
Author(s):  
Yun Li ◽  
Jeroen Sniekers ◽  
João C. Malaquias ◽  
Cedric Van Goethem ◽  
Koen Binnemans ◽  
...  

2014 ◽  
Vol 43 ◽  
pp. 63-66 ◽  
Author(s):  
Che-Nan Sun ◽  
Zhijiang Tang ◽  
Cami Belcher ◽  
Thomas A. Zawodzinski ◽  
Cy Fujimoto

RSC Advances ◽  
2016 ◽  
Vol 6 (8) ◽  
pp. 6029-6037 ◽  
Author(s):  
Di Lu ◽  
Lele Wen ◽  
Feng Nie ◽  
Lixin Xue

A serials of imidazolium functionalized poly(arylene ether sulfone) as anion exchange membranes (AEMs) for all-vanadium redox flow battery (VRB) application are synthesized successfully in this study.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4761
Author(s):  
Do-Hyeong Kim ◽  
Moon-Sung Kang

In this work, high-performance pore-filled anion-exchange membranes (PFAEMs) with double cross-linking structures have been successfully developed for application to promising electrochemical energy conversion systems, such as alkaline direct liquid fuel cells (ADLFCs) and vanadium redox flow batteries (VRFBs). Specifically, two kinds of porous polytetrafluoroethylene (PTFE) substrates, with different hydrophilicities, were utilized for the membrane fabrication. The PTFE-based PFAEMs revealed, both excellent electrochemical characteristics, and chemical stability in harsh environments. It was proven that the use of a hydrophilic porous substrate is more desirable for the efficient power generation of ADLFCs, mainly owing to the facilitated transport of hydroxyl ions through the membrane, showing an excellent maximum power density of around 400 mW cm−2 at 60 °C. In the case of VRFB, however, the battery cell employing the hydrophobic PTFE-based PFAEM exhibited the highest energy efficiency (87%, cf. AMX = 82%) among the tested membranes, because the crossover rate of vanadium redox species through the membrane most significantly affects the VRFB efficiency. The results imply that the properties of a porous substrate for preparing the membranes should match the operating environment, for successful applications to electrochemical energy conversion processes.


2016 ◽  
Vol 7 (14) ◽  
pp. 2464-2475 ◽  
Author(s):  
Liang Zhu ◽  
Tawanda J. Zimudzi ◽  
Nanwen Li ◽  
Jing Pan ◽  
Bencai Lin ◽  
...  

To produce anion conductive and durable polymer electrolytes for alkaline fuel cell applications, a series of cross-linked quaternary ammonium functionalized poly(2,6-dimethyl-1,4-phenylene oxide)s with mass-based ion exchange capacities (IEC) ranging from 1.80 to 2.55 mmol g−1 were synthesized via thiol–ene click chemistry.


2014 ◽  
Vol 454 ◽  
pp. 44-50 ◽  
Author(s):  
Do-Hyeong Kim ◽  
Seok-Jun Seo ◽  
Myung-Jin Lee ◽  
Jin-Soo Park ◽  
Seung-Hyeon Moon ◽  
...  

2019 ◽  
Vol 233-234 ◽  
pp. 622-643 ◽  
Author(s):  
L. Zeng ◽  
T.S. Zhao ◽  
L. Wei ◽  
H.R. Jiang ◽  
M.C. Wu

Sign in / Sign up

Export Citation Format

Share Document