scholarly journals Performance Analysis of a Full-Scale Desalination Plant with Reverse Osmosis Membranes for Irrigation

Membranes ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 774
Author(s):  
Federico Leon ◽  
Alejandro Ramos

Reverse osmosis (RO) is the most widely used technology for seawater desalination purposes. The long-term operating data of full-scale plants is key to analyse their performance under real conditions. The studied seawater reverse osmosis (SWRO) desalination plant had a production capacity of 5000 m3/d for irrigation purposes. The operating data such as conductivities flows, and pressures were collected for around 27,000 h for 4 years. The plant had sand and cartridge filters without chemical dosing in the pre-treatment stage, a RO system with one stage, 56 pressure vessels, seven RO membrane elements per pressure vessel and a Pelton turbine as energy recovery device. The operating data allowed to calculate the average water and salt permeability coefficients (A and B) of the membrane as well as the specific energy consumption (SEC) along the operating period. The calculation of the average A in long-term operation allowed to fit the parameters of three different models used to predict the mentioned parameter. The results showed a 30% decrease of A, parameter B increase around 70%. The SEC was between 3.75 and 4.25 kWh/m3. The three models fitted quite well to the experimental data with standard deviations between 0.0011 and 0.0015.

2019 ◽  
Vol 25 (5) ◽  
pp. 763-770 ◽  
Author(s):  
Yongjun Choi ◽  
Younggeun Lee ◽  
Kwanghee Shin ◽  
Youngkyu Park ◽  
Sangho Lee

The reverse osmosis (RO) technology is currently the leading desalination method. However, until recently, application of RO technology on a large scale has been primarily limited by membrane fouling. The mechanism of fouling is complex, which is not well understood in full-scale plants. Although many studies about modeling and prediction of fouling have been done, in most cases, the experimental data set of lab or pilot scale systems, which may not show fouling characteristics well in full-scale systems were used. In this study, both artificial neural network (ANN) model and tree model (TM) was evaluated to analyze long-term performance of full scale reverse osmosis desalination plant. The results of application of the ANN and TM indicated high correlation coefficients between the measured and simulated output variables. However, it is not easy to use ANN for the full scale plant operation because the final model is not expressed as a form of mathematical functions. TM has advantages over ANN because the model can be obtained as forms of simple function and it showed reasonably high <i>R</i><sup>2</sup>. Therefore, TM is shown to be more adequate than ANN for developing models in which the full-scale RO plant data is considered as an input.


2020 ◽  
Vol 53 (2) ◽  
pp. 16561-16568
Author(s):  
Mariam Elnour ◽  
Nader Meskin ◽  
Khlaed M. Khan ◽  
Raj Jain ◽  
Syed Zaidi ◽  
...  

Author(s):  
Claude Faidy

Based on ASME Boilers and Pressure Vessels Code the major fracture mechanic analysis is limited to protection of class 1 components to brittle fracture. All the Operators of future plants have to enlarge the scope of these analyses to different concepts, at design or operation stage: - brittle and ductile analysis of hypothetical large flaw - leak before break approach - break exclusion concept - incredibility of failure of high integrity components - end of fabrication acceptable defect - in-service inspection performance - acceptable standards in operation - Long Term Operation (LTO) All these requirements needs a procedure, an analysis method with material properties and criteria. After a short overview of each topic, the paper will present how RCC-M, RSE-M French Codes and ASME III and XI take care of all these new modern regulatory requirements.


Author(s):  
Hammad Siddiqui ◽  
Mariam Elnour ◽  
Nader Meskin ◽  
Syed Zaidi

Reverse Osmosis (RO) is an efficient and clean membrane-based technology for water desalination. This work presents a full-scale seawater reverse osmosis (SWRO) desalination plant simulator using MATLAB/Simulink that has been validated using the operational data from a local plant. It allows simulating the system behavior under different operating conditions with high flexibility and minimal cost.


Biofouling ◽  
2010 ◽  
Vol 27 (1) ◽  
pp. 47-58 ◽  
Author(s):  
C.-L. de O. Manes ◽  
N. West ◽  
S. Rapenne ◽  
P. Lebaron

Author(s):  
Rinzo Kayano ◽  
Eiichi Yamamoto ◽  
Takayasu Tahara

Pressure vessels made from Cr-Mo steels are utilized for high temperature and high pressure services including hot hydrogen services. After long term operation, there are several past experiences of damages and/or degradation of materials such as temper embrittlement, creep embrittlement, hydrogen attack and hydrogen embrittlement. This paper summarizes typical damages/degradation and examples of weld repairs including special attention to development of weld repair procedure. The subject equipments are heavy wall petroleum pressure vessels made from Cr-Mo steel with austenitic stainless steel overlay cladding. Cracking could be prevented by controlling the repair welding process to reduce the hydrogen content at the interface. After repair welding, adequate post weld heat treatment (PWHT) has to be executed. Recently, repair welding has become an important aspect as part of post construction codes for pressure equipment to keep safe and long term continuous operation of the process plants because many of the plants have been operated for more than thirty years in Japan. Responding to the needs of petroleum and chemical industries, The Chemical Plant Welding Research Committee (CPWRC) of The Japan Welding Engineering Society (JWES) established the Pressure Equipment Repair Welding Subcommittee (PERW S/C) [1]. The S/C has developed optimum repair welding methods and procedures in the guideline on November 2009, with reference to the above investigation results. This paper also introduces the repair welding guideline for the pressure vessels made from Cr-Mo steels.


Author(s):  
Naiara Hernández-Ibáñez ◽  
Juan Arévalo ◽  
Vicente F. Mena ◽  
Victor Monsalvo-Garcia ◽  
Frank Rogalla

Abstract This chapter presents the construction, operation, and validation of all the MIDES systems, including water pre-treatment, wastewater pre-treatment, the microbial desalination cell (MDC), low-pressure reverse osmosis (RO), and post-treatment (remineralization and disinfection). MIDES technology has been validated with different water sources: brackish water from Demo Site 1, (Racons Brackish Water Desalination Plant (BWDP), located in Denia, Spain) and seawater from Demo Site 2 (Fonsalía Seawater Desalination Plant (SWDP), located in Guía de Isora, Spain). In this chapter, the preparation of both demo sites for the reception and installation of the pilot plants is also presented.


Sign in / Sign up

Export Citation Format

Share Document