scholarly journals Influence of MWCNT Coated Nickel on the Foaming Behavior of MWCNT Coated Nickel Reinforced AlMg4Si8 Foam by Powder Metallurgy Process

Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 955 ◽  
Author(s):  
Ferdinandus Sarjanadi Damanik ◽  
Günther Lange

This research studies the effect of multi-wall carbon nanotube (MWCNT) coated nickel to foaming time on the foam expansion and the distribution of pore sizes MWCNT reinforced AlMg4Si8 foam composite by powder metallurgy process. To control interface reactivity and wettability between MWCNT and the metal matrix, nickel coating is carried out on the MWCNT surface. Significantly, different foaming behavior of the MWCNT coated nickel reinforced AlMg4Si8 was studied with a foaming time variation of 8 and 9 min. Digital images generated by the imaging system are used with the MATLAB R2017a algorithm to determine the porosity of the surface and the pore area of aluminum foam efficiently. The results can have important implications for processing MWCNT coated nickel reinforced aluminum alloy composites.

2011 ◽  
Vol 37 (6) ◽  
pp. 321-325
Author(s):  
Bin SUN ◽  
Shufeng LI ◽  
Hisashi IMAI ◽  
Junko UMEDA ◽  
Katsuyoshi KONDOH

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5696
Author(s):  
Hongyan Che ◽  
Yazhong Zhai ◽  
Yingjie Yan ◽  
Yongqing Chen ◽  
Wei Qin ◽  
...  

Oxide dispersion strengthened ferritic steel is considered an important structural material in fusion reactors due to its excellent resistance to radiation and oxidation. Fine and dispersed oxides can be introduced into the matrix via the powder metallurgy process. In the present study, large grain sizes and prior particle boundaries (PPBs) formed in the FeCrAlY alloy prepared via powder metallurgy. Thermo-mechanical treatment was conducted on the FeCrAlY alloy. Results showed that microstructure was optimized: the average grain diameter decreased, the PPBs disappeared, and the distribution of oxides dispersed. Both ultimate tensile strength and elongation improved, especially the average elongation increased from 0.5% to 23%.


Sign in / Sign up

Export Citation Format

Share Document