foaming behavior
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 62)

H-INDEX

27
(FIVE YEARS 5)

Polymers ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 44
Author(s):  
Mu Sung Kweon ◽  
Mahmoud Embabi ◽  
Maksim E. Shivokhin ◽  
Anvit Gupta ◽  
Xuejia Yan ◽  
...  

While existing foam studies have identified processing parameters, such as high-pressure drop rate, and engineering measures, such as high melt strength, as key factors for improving foamability, there is a conspicuous absence of studies that directly relate foamability to material properties obtained from fundamental characterization. To bridge this gap, this work presents batch foaming studies on one linear and two long-chain branched polypropylene (PP) resins to investigate how foamability is affected by partial melting (Method 1) and complete melting followed by undercooling (Method 2). At temperatures above the melting point, similar expansion was obtained using both foaming procedures within each resin, while the PP with the highest strain hardening ratio (13) exhibited the highest expansion ratio (45 ± 3). At low temperatures, the foamability of all resins was dramatically improved using Method 2 compared to Method 1, due to access to lower foaming temperatures (<150 °C) near the crystallization onset. Furthermore, Method 2 resulted in a more uniform cellular structure over a wider temperature range (120–170 °C compared to 155–175 °C). Overall, strong extensional hardening and low onset of crystallization were shown to give rise to foamability at high and low temperatures, respectively, suggesting that both characteristics can be appropriately used to tune the foamability of PP in industrial foaming applications.


Polymers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 3836
Author(s):  
Alberto Ballesteros ◽  
Ester Laguna-Gutiérrez ◽  
Miguel Ángel Rodríguez-Pérez

Different percentages of an elastomeric phase of styrene-ethylene-butylene-styrene (SEBS) were added to a polystyrene (PS) matrix to evaluate its nucleating effect in PS foams. It has been demonstrated that a minimum quantity of SEBS produces a high nucleation effect on the cellular materials that are produced. In particular, the results show that by adding 2% of SEBS, it is possible to reduce the cell size by 10 times while maintaining the density and open cell content of the foamed materials. The influence of this polymeric phase on the glass transition temperature (Tg) and the shear and extensional rheological properties has been studied to understand the foaming behavior. The results indicate a slight increase in the Tg and a decrease of the shear viscosity, extensional viscosity, and strain hardening coefficient as the percentage of SEBS increases. Consequently, an increase in the density and a deterioration of the cellular structure is detected for SEBS amounts higher than 3%.


Author(s):  
Rémy Bois ◽  
Isabelle Pezron ◽  
Patricia Rotureau ◽  
Elisabeth Van Hecke ◽  
Guillaume Fayet ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1382
Author(s):  
Florian Patrick Schäfke ◽  
Susanne Elisabeth Thürer ◽  
Hans Jürgen Maier ◽  
Christian Klose

Metal foams are attractive for lightweight construction in the automotive sector since they provide high-energy absorption and good damping properties, which is crucial, e.g., for crash structures. Currently, however, foams are produced separately and then pasted into the components. Consequently, the overall mechanical properties depend significantly on the quality of the adhesive bond between the foam and the structural component. A new process route for the manufacture of hybrid foamed hollow aluminum profiles is proposed. In this approach, a foamable precursor material is directly integrated into the extrusion process of the hollow structural profile. To this end, special low-melting alloys were developed in this study to enable foaming inside the aluminum profile. The melting intervals of these alloys were examined using differential scanning calorimetry. One of the promising AlZnSi alloys was atomized, mixed with a foaming agent and then compacted into semi-finished products for subsequent co-extrusion. The foaming behavior, which was investigated by means of X-ray microscopy, is shown to depend primarily on the mass fraction of the foaming agent as well as the heat treatment parameters. The results demonstrate that both the melting interval and the foaming behavior of AlZn22Si6 make this particular alloy a suitable candidate for the desired process chain.


2021 ◽  
Vol 28 (7) ◽  
Author(s):  
Shu-Kai Yeh ◽  
Raghavendrakumar Rangappa ◽  
Ting-Hao Hsu ◽  
Stephen Utomo

Sign in / Sign up

Export Citation Format

Share Document