scholarly journals Primary Structure and Graphite Nodules in Thin-Walled High-Nickel Ductile Iron Castings

Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 649
Author(s):  
Marcin Górny ◽  
Magdalena Kawalec ◽  
Gabriela Sikora ◽  
Ewa Olejnik ◽  
Hugo Lopez

This paper considers the most important quality factors in processing spheroidal graphite cast iron; namely, primary grains and graphite nodules in thin-walled ductile iron castings (TWDI). In the present study, the effect of grain refinement (by means of Ti, Nb and Zr) and of the holding time after spheroidization and inoculation on effecting the primary grains and eutectic structure in TWDI castings was investigated. Moreover, metallographic examinations (including electron backscattering diffraction, EBSD) were carried out to reveal the macro- and micro-structural features during the primary and eutectic solidification of the cast iron. EBSD results indicate that, within a single dendritic grain, there are numerous boundaries that split the grain into numerous smaller areas. In particular, it is found that the graphite nodules are in contact with the boundaries inside the primary dendritic grain. In turn, crystallization of highly branched dendrites is observed, which seems to “push” the graphite nodules into the interdendritic regions during their growth. The present work investigates the dominant mechanism that gives rise to the primary spheroidal graphite cast iron (SGI) structure. In addition, this work shows that the melt quality is closely associated with the resultant morphology and number of austenite dendrites, graphite nodules, and matrix structure.

2001 ◽  
Vol 41 (4) ◽  
pp. 372-380 ◽  
Author(s):  
P. J. J. Ratto ◽  
A. F. Ansaldi ◽  
V. E. Fierro ◽  
F. R. Agüera ◽  
H. N. Alvarez Villar ◽  
...  

2007 ◽  
Vol 537-538 ◽  
pp. 389-396 ◽  
Author(s):  
Ibolya Kardos ◽  
Zoltán Gácsi ◽  
Péter János Szabó

Color etching is a widely used technique for visualizing different phases in metallic materials. Its advantage to the traditional etching techniques is that it gives additional information within one phase, namely, the color shade of a given phase can change in a certain range. This paper demonstrates that, due to the physics of the color etching, the shade of a phase also depends on the crystallographic orientation of the investigated grain. As a test material, spheroidal graphite cast iron was used, and individual grain orientation was identified by automated electron back scattering diffraction (EBSD). Results showed that there is a strong correlation between grain orientation and the shades obtained by color etching.


Wear ◽  
1996 ◽  
Vol 198 (1-2) ◽  
pp. 150-155 ◽  
Author(s):  
K. Shimizu ◽  
T. Noguchi ◽  
T. Kamada ◽  
H. Takasaki

Materia Japan ◽  
2009 ◽  
Vol 48 (12) ◽  
pp. 624-624 ◽  
Author(s):  
Yasuhide Ishiguro ◽  
Kenji Ichino ◽  
Hideto Takasugi

2007 ◽  
Vol 561-565 ◽  
pp. 925-928 ◽  
Author(s):  
Seijiro Maki ◽  
Kazuhito Suzuki ◽  
Kenichiro Mori

Feasibility of semisolid forging of cast iron using rapid resistance heating was experimentally investigated. Gray pig iron FC250 and spheroidal graphite cast iron FCD600, whose carbon equivalents are both 4.3% in mass, were used for the experiments. Since these cast irons have a narrow semisolid temperature range, an AC power supply with an input electric energy control function was used. In this study, the resistance heating characteristics of the cast irons were firstly examined, and then their semisolid forging experiments were conducted. In the forging experiments, the conditions of the forgings such as microstructures and hardness properties were examined, and the feasibility of the semisolid forging of cast iron using resistance heating was discussed. As a result, it was found that the method presented here is highly feasible.


Sign in / Sign up

Export Citation Format

Share Document