scholarly journals Porosity and Microstructure Iron-Based Graded Materials Sintered by Spark Plasma Sintering and the Conventional Method

Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 264
Author(s):  
Krzysztof Zarębski ◽  
Piotr Putyra ◽  
Dariusz Mierzwiński

Using PNC-60 powder with the addition of graphite, cylindrical products characterized by different compositions of core and outer layers were made. Some compacts were sintered via the conventional process, while others were subjected to the spark plasma sintering method (SPS) at different times and temperatures. The gradient microstructure was obtained in the transition zone by mixing powders during die filling, followed by pressing and diffusion during sintering. The effect of sintering parameters on the nature of the gradient zone and the morphology of the pores was shown. After conventional sintering, the gradient zone was wider than it was after SPS. Via SPS, the short sintering time confined the diffusion to a local range, making its influence on the gradient structure negligible. Differences in the microstructure were confirmed by functional description.

2007 ◽  
Vol 280-283 ◽  
pp. 141-144
Author(s):  
Jun Jie Hao ◽  
Xiao Hui Wang ◽  
Long Tu Li ◽  
Zhi Lun Gui

The family of bismuth layer-structured ferroelectrics is attractive from the viewpoint of their application as electronic materials such as dielectrics, piezoelectrics and pyroelectrics. However, during conventional sintering method, high sintering temperature and long sintering time were needed and it is difficult to get BIT ceramic with a density more than 95% of its theoretic value. In the present paper, we produce dense BIT pellet using a spark plasma sintering process. The results show that at a sintering temperature as low as 7000C/5min under a pressure of 25MPa, BIT ceramics with a density about 99% of its theoretic can be produced. The densities, grain size and electrical properties of the resulting ceramic were also investigated.


Author(s):  
Eszter Bódis ◽  
Zoltán Károly

AbstractFunctionally graded materials (FGMs) attract considerable interest in materials science and industry, since their composition or morphology gradually changes along their length, width, or height, which provides new approach for the development of multifunctional materials. In this paper, we studied the fabrication of a gradient microstructure in alumina (Al2O3) by spark plasma sintering (SPS). During the SPS process, the applied asymmetric graphite tool configuration causes a large temperature gradient, which results in a gradually changing morphology in Al2O3 ceramics. The local temperatures were quantitatively measured through extra thermocouples during SPS processes with various asymmetric configurations. In the most asymmetric configuration, a maximum vertical temperature difference of 225 °C was detected within the sample treated at a sintering temperature of 1300 °C and a pressure of 25 MPa applied 200 °C·min−1 heating rate. The microstructure investigations demonstrated the morphology gradient in the ceramic: one part of the Al2O3 exhibited fine, nanostructured morphology with large open and permeable pores, whereas the other part was solid without pores. Our investigations show that a gradient Al2O3 ceramic can be produced with a single-step SPS process, which offers new directions in FGMs research. With an asymmetric sintering configuration and the sintering conditions, the structure of the ceramic, such as porosity, can be designed according to the requirements of the application area.


Author(s):  
B Stalin ◽  
M Ravichandran ◽  
M Balasubramanian ◽  
C Anand Chairman ◽  
D Pritima ◽  
...  

2021 ◽  
Vol 405 ◽  
pp. 126511
Author(s):  
Weisheng Liu ◽  
Xuanru Ren ◽  
Hongao Chu ◽  
Menglin Zhang ◽  
Qingqing Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document