scholarly journals Design of a Compact Dual-Band MIMO Antenna System with High-Diversity Gain Performance in Both Frequency Bands

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 383
Author(s):  
Wazie M. Abdulkawi ◽  
Waqar Ahmad Malik ◽  
Sajjad Ur Rehman ◽  
Abdul Aziz ◽  
Abdel Fattah A. Sheta ◽  
...  

A compact four-element dual-band multiple-input and multiple-output (MIMO) antenna system is proposed to achieve high isolation and low channel capacity loss. The MIMO antenna was designed and optimized to cover the dual-frequency bands; the first frequency band is a wide band, and it covers the frequency range of 1550–2650 MHz, while the other frequency band covers the 3350–3650 MHz range. The measured wide-band impedance bandwidths of 1.1 GHz and 300 MHz were achieved in the lower and upper frequency bands, respectively. The proposed structure consists of four novel antenna elements, along with a plus-sign-shaped ground structure on an FR4 substrate. The overall electrical size of the whole dual-band MIMO antenna system is 0.3λ(W) × 0.3λ(L) × 0.008λ(H) for the lower frequency band. It achieved greater than 10 and 19 dB isolation in the lower and upper frequency bands, respectively. The antenna system accomplished an envelope correlation coefficient of |ρ|≤0.08 in the lower frequency band, while it achieved |ρ|≤0.02 in the higher frequency band. The computed channel capacity loss remained less than almost 0.4 bits/s/Hz in both frequency bands. Therefore, it achieved good performance in both frequency bands, with the additional advantage of a compact size. The proposed MIMO antenna is suitable for compact handheld devices and smartphones used for GSM (Global System for Mobiles), UMTS (Universal Mobile Telecommunications Service), WCDMA (Wideband Code Division Multiple Access), LTE (Long Term Evolution), 5G sub-6 GHz, PCS (Personal Communications Service), and WLAN (wireless local area network) applications.

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Praveen Vummadisetty Naidu ◽  
Sai haranadh Akkapanthula ◽  
Maheshbabu Dhanekula ◽  
Neelima Vummadisetty ◽  
Arvind Kumar

Abstract This article discusses a 4-port micro-strip fed MIMO Antenna system with a triangular slot and an inverted L shape strip has been designed and analysed for both 2.3 GHz WiBro and Ultra-wide-band applications. The suggested antenna has been etched on a cost-effective epoxy (FR-4) substrate having ϵ r ${{\epsilon}}_{r}$  = 4.4 with an overall dimension of 45 × 45 × 1.6 mm3. Mutual coupling of −18 dB between the radiators has been obtained by orthogonal placement of radiators. From the simulated and practical results, the proposed compact MIMO system operates in frequency bands 2.26–2.42 GHz and 3.7–10.8 GHz respectively. The proposed small triangular MIMO system operates with an ECC less than 0.005 with an acceptable channel capacity loss <0.5 bits/s/Hz. Further, the diversity characteristics like DG, MEG, TARC, and group delay have been calculated and are presented in this paper.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kumar D. Rajesh ◽  
Babu G. Venkat

Abstract In this paper, six-port MIMO antenna is presented for 5G mobile handsets. The proposed six-port antenna array is designed by making four L shaped monopole slots at four corners and two at the middle side edges of the ground plane which is printed on the backside of 0.8 mm thick FR4 substrate. High isolation (>−18 dB) between any pair of antenna elements is achieved without deploying dedicated isolation enhancing mechanisms. The antenna is working from 3.4–3.6 GHz (LTE Band 42) with 200 MHz bandwidth in the 2:1 VSWR (−10 dB impedance bandwidth). The proposed six-port MIMO antenna array is fabricated and measured. Significant radiation efficiency is obtained from 70 to 74 % in desired band of operation. Further, the MIMO parameters such as Envelope Correlation Co-efficient (ECC), Channel Capacity, Channel Capacity Loss (CLL) and Total Active Reflection Co-Efficient (TARC) are calculated. The robustness of the antenna is estimated by analyzing the user hand effects and Specific Absorption Rate (SAR). The measured results are well agreed with the simulated results.


2012 ◽  
Vol 2012 ◽  
pp. 1-10
Author(s):  
Lajos Nagy

This paper deals with the optimization of MIMO antenna elements' position in modified MIMO cube for getting maximal channel capacity in indoor environment. The dependence of the channel capacity on the antenna orientation was analyzed by simulations. We have also examined the effect of the frequency dependence of the antenna system (in case of conjugate matching and nonconjugate matching) for the channel capacity. Based on the simulation results in the created and measured antenna system, the antennas were at a right angle to each other. At the two chosen different structures, we measured the antenna parameters and the channel capacity. In this paper, we present the results of the measurements which clearly confirm our simulations. We will point out the differences between the two antenna structures.


2014 ◽  
Vol 57 (2) ◽  
pp. 360-364 ◽  
Author(s):  
Muhammad Umar Khan ◽  
Mohammad S. Sharawi

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Kush Agarwal ◽  
Saugata Dutta

This paper proposes a compact microstrip patch antenna for operating in 2.4 GHz ISM and 3.5 GHz WiMAX bands with circularly polarized (CP) radiation. The CP radiation in dual-bands is a result of two multilayered truncated corner stacked square patches, while the reactive impedance surface (RIS) is used for antenna size miniaturization for the lower operating frequency band. Since the overall lateral antenna dimensions are controlled by the lower frequency band (higher wavelength), reducing the electrical size of the antenna for lower band results in overall smaller antenna dimensions. The measured 3-dB axial ratio bandwidths of the in-house fabricated antenna prototype are 6.1% (2.40–2.55 GHz) for the lower band and 5.7% (3.40–3.60 GHz) for the upper band, while the 10-dBS11bandwidths for the two bands are 8.1% (2.39–2.59 GHz) and 6.9% (3.38–3.62 GHz), respectively. The maximum gain at boresight for the lower band is 2.93 dBic at 2.5 GHz, while the gain for the upper band is 6.26 dBic at 3.52 GHz. The overall volume of the proposed antenna is 0.292λo × 0.292λo × 0.044λo, whereλois the corresponding free-space wavelength at 2.5 GHz.


2014 ◽  
Vol 8 (1) ◽  
pp. 117-124 ◽  
Author(s):  
Mohammed Younus Talha ◽  
Kamili Jagadeesh Babu ◽  
Rabah W. Aldhaheri

A novel compact multiple-input–multiple-output (MIMO) antenna system operating from 5 to 7.3 GHz is proposed for wireless applications. It comprises of two similar antennas with microstrip feeding and radiating patches developed on a reduced ground plane. The developed antenna system resonates at a dual-band of 5.4 and 6.8 GHz frequencies, giving an impedance bandwidth of 38% (based on S11 < −10 dB). The unique structure of the proposed MIMO system gives a reduced mutual coupling of −27 dB at 5.4 GHz resonant frequency and −19 dB at 6.8 GHz resonant frequency and in the entire operating band the coupling is maintained well below −16 dB. The envelope correlation coefficient of the proposed MIMO system is calculated and is found to be less than 0.05 in the operating band. The measured and simulation results are found in good agreement.


Sign in / Sign up

Export Citation Format

Share Document