scholarly journals Design and Development of an Upper Limb Rehabilitative Robot with Dual Functionality

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 870
Author(s):  
Md Rasedul Islam ◽  
Md Assad-Uz-Zaman ◽  
Brahim Brahmi ◽  
Yassine Bouteraa ◽  
Inga Wang ◽  
...  

The design of an upper limb rehabilitation robot for post-stroke patients is considered a benchmark problem regarding improving functionality and ensuring better human–robot interaction (HRI). Existing upper limb robots perform either joint-based exercises (exoskeleton-type functionality) or end-point exercises (end-effector-type functionality). Patients may need both kinds of exercises, depending on the type, level, and degree of impairments. This work focused on designing and developing a seven-degrees-of-freedom (DoFs) upper-limb rehabilitation exoskeleton called ‘u-Rob’ that functions as both exoskeleton and end-effector types device. Furthermore, HRI can be improved by monitoring the interaction forces between the robot and the wearer. Existing upper limb robots lack the ability to monitor interaction forces during passive rehabilitation exercises; measuring upper arm forces is also absent in the existing devices. This research work aimed to develop an innovative sensorized upper arm cuff to measure the wearer’s interaction forces in the upper arm. A PID control technique was implemented for both joint-based and end-point exercises. The experimental results validated both types of functionality of the developed robot.

2020 ◽  
pp. 1-17
Author(s):  
Qing Sun ◽  
Shuai Guo ◽  
Leigang Zhang

BACKGROUND: The definition of rehabilitation training trajectory is of great significance during rehabilitation training, and the dexterity of human-robot interaction motion provides a basis for selecting the trajectory of interaction motion. OBJECTIVE: Aimed at the kinematic dexterity of human-robot interaction, a velocity manipulability ellipsoid intersection volume (VMEIV) index is proposed for analysis, and the dexterity distribution cloud map is obtained with the human-robot cooperation space. METHOD: Firstly, the motion constraint equation of human-robot interaction is established, and the Jacobian matrix is obtained based on the speed of connecting rod. Then, the Monte Carlo method and the cell body segmentation method are used to obtain the collaborative space of human-robot interaction, and the VMEIV of human-robot interaction is solved in the cooperation space. Finally, taking the upper limb rehabilitation robot as the research object, the dexterity analysis of human-robot interaction is carried out by using the index of the approximate volume of the VMEIV. RESULTS: The results of the simulation and experiment have a certain consistency, which indicates that the VMEIV index is effective as an index of human-robot interaction kinematic dexterity. CONCLUSIONS: The VMEIV index can measure the kinematic dexterity of human-robot interaction, and provide a reference for the training trajectory selection of rehabilitation robot.


2021 ◽  
Author(s):  
Liaoyuan Li ◽  
Jianhai Han ◽  
Xiangpan Li ◽  
Bingjing Guo ◽  
Pengpeng Xia ◽  
...  

Author(s):  
Tetsuya KURASUMI ◽  
Sung-Gwi CHO ◽  
Tomoki ISHIKURA ◽  
Ming DING ◽  
Jun TAKAMATSU ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Yali Liu ◽  
Chong Li ◽  
Linhong Ji ◽  
Sheng Bi ◽  
Xuemin Zhang ◽  
...  

Numerous robots have been widely used to deliver rehabilitative training for hemiplegic patients to improve their functional ability. Because of the complexity and diversity of upper limb motion, customization of training patterns is one key factor during upper limb rehabilitation training. Most of the current rehabilitation robots cannot intelligently provide adaptive training parameters, and they have not been widely used in clinical rehabilitation. This article proposes a new end-effector upper limb rehabilitation robot, which is a two-link robotic arm with two active degrees of freedom. This work investigated the kinematics and dynamics of the robot system, the control system, and the realization of different rehabilitation therapies. We also explored the influence of constraint in rehabilitation therapies on interaction force and muscle activation. The deviation of the trajectory of the end effector and the required trajectory was less than 1 mm during the tasks, which demonstrated the movement accuracy of the robot. Besides, results also demonstrated the constraint exerted by the robot provided benefits for hemiplegic patients by changing muscle activation in the way similar to the movement pattern of the healthy subjects, which indicated that the robot can improve the patient’s functional ability by training the normal movement pattern.


2021 ◽  
Author(s):  
Stefano Dalla Gasperina ◽  
Valeria Longatelli ◽  
Francesco Braghin ◽  
Alessandra Laura Giulia Pedrocchi ◽  
Marta Gandolla

Abstract Background: Appropriate training modalities for post-stroke upper-limb rehabilitation are key features for effective recovery after the acute event. This work presents a novel human-robot cooperative control framework that promotes compliant motion and renders different high-level human-robot interaction rehabilitation modalities under a unified low-level control scheme. Methods: The presented control law is based on a loadcell-based impedance controller provided with positive-feedback compensation terms for disturbances rejection and dynamics compensation. We developed an elbow flexion-extension experimental setup, and we conducted experiments to evaluate the controller performances. Seven high-level modalities, characterized by different levels of (i) impedance-based corrective assistance, (ii) weight counterbalance assistance, and (iii) resistance, have been defined and tested with 14 healthy volunteers.Results: The unified controller demonstrated suitability to promote good transparency and render compliant and high-impedance behavior at the joint. Superficial electromyography results showed different muscular activation patterns according to the rehabilitation modalities. Results suggested to avoid weight counterbalance assistance, since it could induce different motor relearning with respect to purely impedance-based corrective strategies. Conclusion: We proved that the proposed control framework could implement different physical human-robot interaction modalities and promote the assist-as-needed paradigm, helping the user to accomplish the task, while maintaining physiological muscular activation patterns. Future insights involve the extension to multiple degrees of freedom robots and the investigation of an adaptation control law that makes the controller learn and adapt in a therapist-like manner.


Author(s):  
Sri Sadhan Jujjavarapu ◽  
Amirhossein H. Memar ◽  
Ehsan T. Esfahani

This paper presents a design of variable stiffness actuation system based on on the force interactions caused by permanent magnets. The system is designed for rehabilitation of the upper limb with the goal to enhance rehabilitation in both clinical and home environments. The proposed active rehabilitation system is composed of a lightweight 6-axes robotic arm to move the patients hand in the desired trajectory. The interaction stiffness is controlled by the mechanism attached to the end-effector. For this purpose, repelling magnet pairs in linear antagonistic configuration are used to control the stiffness of the handle. Stiffness in the mechanism can be controlled via adjusting the distance between the magnets. A mathematical model is presented to analyze the range of adjustable variable stiffness for this mechanism.


Sign in / Sign up

Export Citation Format

Share Document