Design of a 2D Haptic System With Passive Variable Stiffness Using Permanent Magnets for Upper-Limb Rehabilitation

Author(s):  
Sri Sadhan Jujjavarapu ◽  
Amirhossein H. Memar ◽  
Ehsan T. Esfahani

This paper presents a design of variable stiffness actuation system based on on the force interactions caused by permanent magnets. The system is designed for rehabilitation of the upper limb with the goal to enhance rehabilitation in both clinical and home environments. The proposed active rehabilitation system is composed of a lightweight 6-axes robotic arm to move the patients hand in the desired trajectory. The interaction stiffness is controlled by the mechanism attached to the end-effector. For this purpose, repelling magnet pairs in linear antagonistic configuration are used to control the stiffness of the handle. Stiffness in the mechanism can be controlled via adjusting the distance between the magnets. A mathematical model is presented to analyze the range of adjustable variable stiffness for this mechanism.

Author(s):  
Yibin Li ◽  
Han Xu ◽  
Dong Xu ◽  
Xu Zhang ◽  
Jianming Fu ◽  
...  

Abstract This paper proposes a pneumatic upper limb rehabilitation robot (PULRR) which is designed for bilateral upper limb active rehabilitation of the patients after stroke. The PULRR provides an active resistance rehabilitation method based on the pneumatic control system. The air kinetics of the pneumatic cylinder model and the dynamics of the pneumatic system with load are established. An antisaturation proportional-integral-differential (PID) controller is presented for the constant resistance force control through directly adjusting the position of the throttle valve spool according to the patient's active moving speed and the feedback of the air pressure in both chambers. In addition, simulation and experimental results indicate that the controller is effective in constant resistance force control. The resistance mode proposed in this paper shows great potential in active resistance rehabilitation for the patients who suffer from the dyskinesia and insufficient muscle strength of the upper limb with enhanced safety and compliance.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 870
Author(s):  
Md Rasedul Islam ◽  
Md Assad-Uz-Zaman ◽  
Brahim Brahmi ◽  
Yassine Bouteraa ◽  
Inga Wang ◽  
...  

The design of an upper limb rehabilitation robot for post-stroke patients is considered a benchmark problem regarding improving functionality and ensuring better human–robot interaction (HRI). Existing upper limb robots perform either joint-based exercises (exoskeleton-type functionality) or end-point exercises (end-effector-type functionality). Patients may need both kinds of exercises, depending on the type, level, and degree of impairments. This work focused on designing and developing a seven-degrees-of-freedom (DoFs) upper-limb rehabilitation exoskeleton called ‘u-Rob’ that functions as both exoskeleton and end-effector types device. Furthermore, HRI can be improved by monitoring the interaction forces between the robot and the wearer. Existing upper limb robots lack the ability to monitor interaction forces during passive rehabilitation exercises; measuring upper arm forces is also absent in the existing devices. This research work aimed to develop an innovative sensorized upper arm cuff to measure the wearer’s interaction forces in the upper arm. A PID control technique was implemented for both joint-based and end-point exercises. The experimental results validated both types of functionality of the developed robot.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jing Chen

In order to make most patients recover most of their limb functions after rehabilitation training, virtual reality technology is an emerging human-computer interaction technology, which uses the computer and the corresponding application software to build the virtual reality environment. Completing the training tasks in the virtual environment attracts the patients to conduct repeated training in the game and task-based training mode and gradually realizes the rehabilitation training goals. For the rehabilitation population with certain exercise ability, the kinematics of human upper limbs is mainly analyzed, and the virtual reality system based on HTC VIVE is developed. The feasibility and work efficiency of the upper limb rehabilitation training system were verified by experiments. Adult volunteers who are healthy and need rehabilitation training to participate in the experiment were recruited, and experimental data were recorded. The virtual reality upper limb rehabilitation system was a questionnaire. By extracting the motion data, the system application effect is analyzed and evaluated by the simulation diagram. Follow-up results of rehabilitation training showed that the average score of healthy subjects was more than 4 points and 3.8 points per question. Therefore, it is feasible to perform upper limb rehabilitation training using the HTC VIVE virtual reality rehabilitation system.


2021 ◽  
Author(s):  
Liaoyuan Li ◽  
Jianhai Han ◽  
Xiangpan Li ◽  
Bingjing Guo ◽  
Pengpeng Xia ◽  
...  

2019 ◽  
Vol 9 (8) ◽  
pp. 1620 ◽  
Author(s):  
Bai ◽  
Song ◽  
Li

In order to improve the convenience and practicability of home rehabilitation training for post-stroke patients, this paper presents a cloud-based upper limb rehabilitation system based on motion tracking. A 3-dimensional reachable workspace virtual game (3D-RWVG) was developed to achieve meaningful home rehabilitation training. Five movements were selected as the criteria for rehabilitation assessment. Analysis was undertaken of the upper limb performance parameters: relative surface area (RSA), mean velocity (MV), logarithm of dimensionless jerk (LJ) and logarithm of curvature (LC). A two-headed convolutional neural network (TCNN) model was established for the assessment. The experiment was carried out in the hospital. The results show that the RSA, MV, LC and LJ could reflect the upper limb motor function intuitively from the graphs. The accuracy of the TCNN models is 92.6%, 80%, 89.5%, 85.1% and 87.5%, respectively. A therapist could check patient training and assessment information through the cloud database and make a diagnosis. The system can realize home rehabilitation training and assessment without the supervision of a therapist, and has the potential to become an effective home rehabilitation system.


Sign in / Sign up

Export Citation Format

Share Document