scholarly journals An Intranuclear Sodalis-Like Symbiont and Spiroplasma Coinfect the Carrot Psyllid, Bactericera trigonica (Hemiptera, Psylloidea)

2020 ◽  
Vol 8 (5) ◽  
pp. 692 ◽  
Author(s):  
Saptarshi Ghosh ◽  
Noa Sela ◽  
Svetlana Kontsedalov ◽  
Galina Lebedev ◽  
Lee R. Haines ◽  
...  

Endosymbionts harbored inside insects play critical roles in the biology of their insect host and can influence the transmission of pathogens by insect vectors. Bactericera trigonica infests umbelliferous plants and transmits the bacterial plant pathogen Candidatus Liberibacter solanacearum (CLso), causing carrot yellows disease. To characterize the bacterial diversity of B. trigonica, as a first step, we used PCR-restriction fragment length polymorphism (PCR-RFLP) and denaturing gradient gel electrophoresis (DGGE) analyses of 16S rDNA to identify Sodalis and Spiroplasma endosymbionts. The prevalence of both symbionts in field-collected psyllid populations was determined: Sodalis was detected in 100% of field populations, while Spiroplasma was present in 82.5% of individuals. Phylogenetic analysis using 16S rDNA revealed that Sodalis infecting B. trigonica was more closely related to symbionts infecting weevils, stink bugs and tsetse flies than to those from psyllid species. Using fluorescent in situ hybridization and immunostaining, Sodalis was found to be localized inside the nuclei of the midgut cells and bacteriocytes. Spiroplasma was restricted to the cytoplasm of the midgut cells. We further show that a recently reported Bactericera trigonica densovirus (BtDNV), a densovirus infecting B. trigonica was detected in 100% of psyllids and has reduced titers inside CLso-infected psyllids by more than two-fold compared to CLso uninfected psyllids. The findings of this study will help to increase our understanding of psyllid–endosymbiont interactions.

2000 ◽  
Vol 41 (10-11) ◽  
pp. 259-268 ◽  
Author(s):  
B.S. Luxmy ◽  
F. Nakajima ◽  
Kazuo Yamamoto

The bacterial communities of membrane-separation bioreactors (MBR) fed with raw sewage were analyzed by a pilot scale study. The community was analyzed by both Fluorescent in Situ Hybridization (FISH) and PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis) techniques. Five rRNA targeted group specific oligonucleotide probes showed that the alpha- and beta- subclasses of proteobacteria were the most dominant groups among them. The identification of ammonia-oxidizing bacteria in MBR was confirmed by three probes: NEU, Nsv 443 and Nso 190. Mostly the ammonia-oxidizers were found in groups and present in the form of clusters or aggregates. The ratio of NEU/EUB was estimated by double hybridization and image analysis techniques as 6%. The Nitrobacter sp. was also identified inside the MBR with the help of a NIT3 probe and they were also found to be present in the form of a cluster. Usually the clusters formed by the Nitrobacter sp. were smaller than those of ammonia-oxidizing groups. After numerical analysis on the band pattern of DGGE, it was found that the MBR bacterial communities were different from that of conventional activated sludge (CAS) communities with dissimilarity indexes more than 0.6. The diversity of the microbial community was estimated by the Shannon-Weaver index of general diversity. It was found that the value of the diversity index for the CAS process was 1.61 while those for two MBR processes were 1.68 and 1.59.


2001 ◽  
Vol 67 (10) ◽  
pp. 4891-4895 ◽  
Author(s):  
Guadalupe Piñar ◽  
Cayo Ramos ◽  
Sabine Rölleke ◽  
Claudia Schabereiter-Gurtner ◽  
Dietmar Vybiral ◽  
...  

ABSTRACT Several moderately halophilic gram-positive, spore-forming bacteria have been isolated by conventional enrichment cultures from damaged medieval wall paintings and building materials. Enrichment and isolation were monitored by denaturing gradient gel electrophoresis and fluorescent in situ hybridization. 16S ribosomal DNA analysis showed that the bacteria are most closely related to Halobacillus litoralis. DNA-DNA reassociation experiments identified the isolates as a population of hitherto unknownHalobacillus species.


2004 ◽  
Vol 70 (6) ◽  
pp. 3772-3775 ◽  
Author(s):  
David C. Gillan ◽  
Nicole Dubilier

ABSTRACT Comparative analysis of the 16S rRNA gene and fluorescent in situ hybridization (FISH) was used to identify epibiotic filamentous bacteria living on the marine amphipod crustacean Urothoe poseidonis. The epibionts belong to the gamma proteobacteria and represent a novel marine phylotype within the genus Thiothrix. FISH and denaturing gradient gel electrophoresis revealed that the Thiothrix filaments are present on the majority of the amphipods examined.


2013 ◽  
Vol 59 (10) ◽  
pp. 694-700 ◽  
Author(s):  
Xinyu Li ◽  
Xu Li ◽  
Jian Wang ◽  
Xiujuan Wang ◽  
Jian Sun ◽  
...  

Indigenous Mycobacterium communities play an important role in the degradation of polycyclic aromatic hydrocarbons (PAHs), but little is known about Mycobacterium distribution in situ at PAH-contaminated sites. In this study, the diversity and distribution of Mycobacterium communities were investigated in sediments and soils at sites upstream, midstream, and downstream of an oil-sewage irrigation channel, using denaturing gradient gel electrophoresis (DGGE). The results show that heavy PAH contamination in upstream sites negatively affected Mycobacterium community diversity compared with midstream and downstream sites in all 3 sample types (sediments, corn field soils, and rice field soils). There was a correlation between the distribution of Mycobacterium communities and PAH contamination, as indicated by canonical correspondence analysis. Mycobacterium diversity and distribution was found to vary between the 3 sample types.


Sign in / Sign up

Export Citation Format

Share Document