scholarly journals Surface Weathering of Tuffs: Compositional and Microstructural Changes in the Building Stones of the Medieval Castles of Hungary

Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 376 ◽  
Author(s):  
Luigi Germinario ◽  
Ákos Török

Volcanic tuffs have a historical tradition of usage in Northern Hungary as dimension stones for monumental construction, Ottoman architecture, common dwellings, etc., admirable at its best in the medieval castles of Eger and Sirok. This research explores tuff deterioration in the castle walls, dealing with the mineralogical composition, microstructure, trace-element geochemistry, and microporosity of the surface weathering products and the near-surface stone substrate. The classic microscopic and mineralogical techniques–optical microscopy, SEM-EDS, and XRD–were supported by ICP-MS and nitrogen adsorption analyses. The textures and mineral assemblages of the tuffs are partly diverse, and so are the weathering characteristics, although including common features such as secondary crystallization of gypsum, swelling clay minerals, and iron oxides-hydroxides; deposition of airborne pollutants, i.e., carbon particles and heavy metals; formation of crusts and patinas; decreased surface microporosity. Nonetheless, the entity of deterioration varies, in relation to air pollution–involving changing emissions from road and rail transport–and the specific tuff texture, porosity, and durability–affecting pollutant absorption. The studied stone monuments offer the possibility to examine materials with analogue composition and petrogenesis but utilized in different environmental contexts, which allow pointing out the environmental and lithological constraints and cause-effect relationships related to surface weathering.

Clay Minerals ◽  
2014 ◽  
Vol 49 (2) ◽  
pp. 327-340 ◽  
Author(s):  
D. S. Wray ◽  
C. V. Jeans

AbstractGeochemical analysis of acid-insoluble residues derived from white chalks and marl seams of Campanian age from Sussex, UK, has been undertaken. All display a broadly similar <2 μm mineralogical composition consisting of smectite or smectite-rich illite-smectite with subordinate illite and minor amounts of talc. Plots of K2O/Al2O3 and TiO2/Al2O3 indicate that most marl seams have an acid-insoluble residue composition which is slightly different to that of the over- and underlying white chalk, implying that marl seams are primary sedimentary features not formed through white chalk dissolution. On the basis of a negative Eu anomaly and trace element geochemistry one marl seam, the Old Nore Marl, is considered to be volcanically derived and best classified as a bentonite; it is considered to correlate with the bentonite M1 of the north German succession.


Author(s):  
Henrik Rasmussen ◽  
Lars Frimodt Pedersen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Rasmussen, H., & Frimodt Pedersen, L. (1999). Stratigraphy, structure and geochemistry of Archaean supracrustal rocks from Oqaatsut and Naajaat Qaqqaat, north-east Disko Bugt, West Greenland. Geology of Greenland Survey Bulletin, 181, 65-78. https://doi.org/10.34194/ggub.v181.5114 _______________ Two Archaean supracrustal sequences in the area north-east of Disko Bugt, c. 1950 and c. 800 m in thickness, are dominated by pelitic and semipelitic mica schists, interlayered with basic metavolcanic rocks. A polymict conglomerate occurs locally at the base of one of the sequences. One of the supracrustal sequences has undergone four phases of deformation; the other three phases. In both sequences an early phase, now represented by isoclinal folds, was followed by north-west-directed thrusting. A penetrative deformation represented by upright to steeply inclined folds is only recognised in one of the sequences. Steep, brittle N–S and NW–SE striking faults transect all rock units including late stage dolerites and lamprophyres. Investigation of major- and trace-element geochemistry based on discrimination diagrams for tectonic setting suggests that both metasediments and metavolcanic rocks were deposited in an environment similar to a modern back-arc setting.


2016 ◽  
Author(s):  
Jennifer A. Laughlin ◽  
◽  
Joseph L. Wooden ◽  
A.P. Barth ◽  
John T. Shukle ◽  
...  

2020 ◽  
Author(s):  
Caitlin M. Livsey ◽  
◽  
Catherine V. Davis ◽  
Jennifer S. Fehrenbacher ◽  
Claudia Benitez-Nelson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document