scholarly journals Chemostratigraphy and provenance of clays and other non-carbonate minerals in chalks of Campanian age (Upper Cretaceous) from Sussex, southern England

Clay Minerals ◽  
2014 ◽  
Vol 49 (2) ◽  
pp. 327-340 ◽  
Author(s):  
D. S. Wray ◽  
C. V. Jeans

AbstractGeochemical analysis of acid-insoluble residues derived from white chalks and marl seams of Campanian age from Sussex, UK, has been undertaken. All display a broadly similar <2 μm mineralogical composition consisting of smectite or smectite-rich illite-smectite with subordinate illite and minor amounts of talc. Plots of K2O/Al2O3 and TiO2/Al2O3 indicate that most marl seams have an acid-insoluble residue composition which is slightly different to that of the over- and underlying white chalk, implying that marl seams are primary sedimentary features not formed through white chalk dissolution. On the basis of a negative Eu anomaly and trace element geochemistry one marl seam, the Old Nore Marl, is considered to be volcanically derived and best classified as a bentonite; it is considered to correlate with the bentonite M1 of the north German succession.

Clay Minerals ◽  
1982 ◽  
Vol 17 (1) ◽  
pp. 105-156 ◽  
Author(s):  
C. V. Jeans ◽  
R. J. Merriman ◽  
J. G. Mitchell ◽  
D. J. Bland

AbstractThe mineralogy, petrology and trace element geochemistry of volcanogenic glauconites and smectite-rich clays are described and related to clay assemblages in Lower and Upper Cretaceous sediments of southern England and Northern Ireland. Volcanogenic glauconite grains represent argillized lava particles of predominantly mafic composition and may have been derived from submarine basaltic magmatism; they occur in all the sediments examined (Aptian-Senonian), and are particularly abundant in the Cenomanian-Campanian Hibernian Greensand of Antrim. The smectite-rich clays in southern England have developed by the argillization of predominantly acid or alkaline ash during early diagenesis. Three types of volcanogenic deposit are recognized. Primary bentonites are thin ash-falls deposited in quiet, brackish and marine waters (Speeton Clay, Ryazanian; Weald Clay, Barremian). Secondary bentonites are local accumulations of ash transported into the Cretaceous seas by rivers draining ash-blanketed, local land areas (London Platform, Portsdown Axis). These deposits are well-developed in the Sandgate Beds, Folkestone Beds and their contiguous deposits, and the lower part of the Gault (Upper Aptian-Middle Albian). The ash originated from penecontemporaneous, subaerial vulcanism located in the southern part of the North Sea. The most conspicuous phase of activity occurred during late Aptian times and has been dated by 40Ar/39Ar isotope analysis at 112 m.y. Bentonitic clays and marls are widespread accumulations of argillized ash that occur as a fine-grained fringing facies to glauconitic quartz sand facies. They make up the upper part of the Atherfleld Clay (Aptian) and the upper part of the Gault (Upper Albian), and they are associated respectively with the Hythe Beds (Aptian) and the Upper Greensand (Upper Albian). They may also occur in the lower part of the Lower Chalk (Cenomanian). The distribution pattern of these smectite-rich clays in southern England is related to the changing palaeogeography of the area in Cretaceous times, and the general coincidence of extensive glaueonite deposits and smectite-rich clays in the Middle and Upper Cretaceous of western Europe and along the eastern seaboard of North America is briefly discussed.


2014 ◽  
Vol 63 ◽  
pp. 129-149 ◽  
Author(s):  
Mustafa Kemal Revan ◽  
Yurdal Genç ◽  
Valeriy V. Maslennikov ◽  
Svetlana P. Maslennikova ◽  
Ross Raymond Large ◽  
...  

1999 ◽  
Vol 36 (10) ◽  
pp. 1671-1695 ◽  
Author(s):  
Cynthia Dusel-Bacon ◽  
Kari M Cooper

We present major- and trace- element geochemical data for 27 amphibolites and six greenstones from three structural packages in the Yukon-Tanana Upland of east-central Alaska: the Lake George assemblage (LG) of Devono-Mississippian augen gneiss, quartz-mica schist, quartzite, and amphibolite; the Taylor Mountain assemblage (TM) of mafic schist and gneiss, marble, quartzite, and metachert; and the Seventymile terrane of greenstone, serpentinized peridotite, and Mississippian to Late Triassic metasedimentary rocks. Most LG amphibolites have relatively high Nb, TiO2, Zr, and light rare earth element contents, indicative of an alkalic to tholeiitic, within-plate basalt origin. The within-plate affinities of the LG amphibolites suggest that their basaltic parent magmas developed in an extensional setting and support a correlation of these metamorphosed continental-margin rocks with less metamorphosed counterparts across the Tintina fault in the Selwyn Basin of the Canadian Cordillera. TM amphibolites have a tholeiitic or calc-alkalic composition, low normalized abundances of Nb and Ta relative to Th and La, and Ti/V values of <20, all indicative of a volcanic-arc origin. Limited results from Seventymile greenstones indicate a tholeiitic or calc-alkalic composition and intermediate to high Ti/V values (27-48), consistent with either a within-plate or an ocean-floor basalt origin. Y-La-Nb proportions in both TM and Seventymile metabasalts indicate the proximity of the arc and marginal basin to continental crust. The arc geochemistry of TM amphibolites is consistent with a model in which the TM assemblage includes arc rocks generated above a west-dipping subduction zone outboard of the North American continental margin in mid-Paleozoic through Triassic time. The ocean-floor or within-plate basalt geochemistry of the Seventymile greenstones supports the correlation of the Seventymile terrane with the Slide Mountain terrane in Canada and the hypothesis that these oceanic rocks originated in a basin between the continental margin and an arc to the west.


2012 ◽  
Vol 76 (3) ◽  
pp. 649-672 ◽  
Author(s):  
P. C. Piilonen ◽  
A. M. McDonald ◽  
G. Poirier ◽  
R. Rowe ◽  
A. O. Larsen

AbstractA detailed electron microprobe (EMP) and laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) study of zircon from six types of miaskitic and agpaitic alkaline pegmatite from the Larvik Plutonic Complex, Oslo rift valley, Norway, was undertaken to shed light on the pegmatite petrogenesis. Detailed rare earth element (REE) analyses indicate important differences between the zircon from each type of pegmatite. Primary zircon from miaskitic Stavern-, Tvedalen- and Stålaker-type pegmatites has a mean ΣREE = 704 ppm, is depleted in LREE and has a significant positive Ce anomaly (Ce/Ce* = 44–67) and negative Eu anomaly (Eu/Eu* = 0.15–0.18). Secondary Tvedalen-type zircon is REE-enriched (ΣREE = 5035 ppm), with a flatter REE pattern, Ce/Ce* = 0.97 and a Eu anomaly similar to primary Tvedalen-type zircon (Eu/Eu* = 0.21). Secondary zircon from agpaitic Langesundsfjord-type pegmatites display a distinctive flat REE pattern characterized by overall REE enrichment (ΣREE = 967), Ce/Ce* = 1.92, and a minor negative Eu anomaly (Eu/Eu* = 0.37). Zircon from agpaitic Bratthagen-type pegmatites occurs as both altered primary and secondary phases and is strongly enriched in REE relative to other zircon (ΣREE = 4178 and 8388, respectively). Primary Bratthagen-type zircon has a similar REE pattern to miaskitic zircon, with a steeper HREE profile and smaller Ce and Eu anomalies (Eu/Eu* = 0.73; Ce/Ce* = 6.22). Secondary Bratthagen-type zircon is strongly enriched in LREE compared to primary zircon, does not display a positive Ce anomaly and has Eu/Eu* = 0.56. The altered primary and secondary Bratthagen-type zircons have elevated Th/UN ratios, suggesting a different melt source for Bratthagen-type agpaitic pegmatites. Zircon from external pegmatites has trace-element signatures similar to Stavern-, Tvedalen- and Staålaker-type primary zircon with Ce/Ce* = 214 and Nb/Ta and Th/U ratios that are similar to those of secondary Langesundsfjord- and Bratthagen-type zircon. It is suggested that the parental melt of the external pegmatites is the same as the miaskitic pegmatites, but that it has undergone alteration by hydrothermal fluids derived from the host basalt, or by post-magmatic F-rich fluids which mobilize Nb and Th. On the basis of texture, morphology and geochemistry, two populations of zircon can be recognized: (1) primary zircon from miaskitic pegmatites; and (2) secondary zircon from post-magmatic, hydrothermal assemblages. The U–Th–Pb isotope analyses indicate that the secondary and altered zircon are depleted in 238U, and enriched in LREE. Interaction of a post-magmatic hydrothermal fluid with an externally derived meteoric fluid is suggested to have influenced the REE signatures, and in particular the Eu and Ce anomalies of the late-stage zircons.


Sign in / Sign up

Export Citation Format

Share Document