scholarly journals Comparison of Detrital Zircon U-Pb and Muscovite 40Ar/39Ar Ages in the Yangtze Sediment: Implications for Provenance Studies

Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 643
Author(s):  
Xilin Sun ◽  
Klaudia F. Kuiper ◽  
Yuntao Tian ◽  
Chang’an Li ◽  
Zengjie Zhang ◽  
...  

Detrital zircon U-Pb and muscovite 40Ar/39Ar dating are useful tools for investigating sediment provenance and regional tectonic histories. However, the two types of data from same sample do not necessarily give consistent results. Here, we compare published detrital muscovite 40Ar/39Ar and zircon U-Pb ages of modern sands from the Yangtze River to reveal potential factors controlling differences in their provenance age signals. Detrital muscovite 40Ar/39Ar ages of the major tributaries and main trunk suggest that the Dadu River is a dominant sediment contributor to the lower Yangtze. However, detrital zircon data suggest that the Yalong, Dadu, and Min rivers are the most important sediment suppliers. This difference could be caused by combined effects of lower reaches dilution, laser spot location on zircons and difference in closure temperature and durability between muscovite and zircon. The bias caused by sediment laser spot targeting a core or rim of zircon and zircon reworking should be considered in provenance studies.

Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 438 ◽  
Author(s):  
Wei Yue ◽  
Xiyuan Yue ◽  
Lingmin Zhang ◽  
Xianbin Liu ◽  
Jian Song

Deltaic areas and marginal seas are important archives that document information on regional tectonic movement, sea level rise, river evolution, and climate change. Here, sediment samples from boreholes of the Yangtze Delta and the modern Yangtze drainage were collected. A quantitative analysis of detrital zircon morphology was used to discuss the provenance evolution of the Yangtze Delta. This research demonstrated that a dramatic change in sediment provenance occurred in the transition from the Pliocene to Quaternary. Zircon grains in the Pliocene sediments featured euhedral crystals with large elongation (>3 accounted for 13.2%) and were closely matched to tributary samples in the Lower Yangtze (>3 accounted for 11.3%), suggesting sediment provenance from the proximal river basin. However, most detrital zircon grains of the Quaternary samples exhibited lower values of elongation and increased roundness (rounded grains were 9.4%), which was similar to those found in the modern Yangtze mainstream (rounded grains were 12.5%) and the middle tributaries (rounded grains were 7.0%). The decrease in zircon elongation and improvement of its roundness in the Quaternary strata implied that the Yangtze Delta received sediments of different provenance that originated from the Middle-Upper Yangtze basin due to the uplift of the Tibetan Plateau. Statistical analysis of detrital zircon morphology has proven useful for studying the source-to-sink of sediments.


2015 ◽  
Vol 41 (4) ◽  
pp. 613
Author(s):  
Zhong-Wei TIAN ◽  
Yong-Hui FAN ◽  
Mei YIN ◽  
Fang-Rui WANG ◽  
Jian CAI ◽  
...  

Ecosphere ◽  
2017 ◽  
Vol 8 (10) ◽  
pp. e01967 ◽  
Author(s):  
Ming-Hong Lu ◽  
Xiao Chen ◽  
Wan-Cai Liu ◽  
Feng Zhu ◽  
Ka-Sing Lim ◽  
...  

2013 ◽  
Vol 17 (5) ◽  
pp. 1985-2000 ◽  
Author(s):  
Y. Huang ◽  
M. S. Salama ◽  
M. S. Krol ◽  
R. van der Velde ◽  
A. Y. Hoekstra ◽  
...  

Abstract. In this study, we analyze 32 yr of terrestrial water storage (TWS) data obtained from the Interim Reanalysis Data (ERA-Interim) and Noah model from the Global Land Data Assimilation System (GLDAS-Noah) for the period 1979 to 2010. The accuracy of these datasets is validated using 26 yr (1979–2004) of runoff data from the Yichang gauging station and comparing them with 32 yr of independent precipitation data obtained from the Global Precipitation Climatology Centre Full Data Reanalysis Version 6 (GPCC) and NOAA's PRECipitation REConstruction over Land (PREC/L). Spatial and temporal analysis of the TWS data shows that TWS in the Yangtze River basin has decreased significantly since the year 1998. The driest period in the basin occurred between 2005 and 2010, and particularly in the middle and lower Yangtze reaches. The TWS figures changed abruptly to persistently high negative anomalies in the middle and lower Yangtze reaches in 2004. The year 2006 is identified as major inflection point, at which the system starts exhibiting a persistent decrease in TWS. Comparing these TWS trends with independent precipitation datasets shows that the recent decrease in TWS can be attributed mainly to a decrease in the amount of precipitation. Our findings are based on observations and modeling datasets and confirm previous results based on gauging station datasets.


Sign in / Sign up

Export Citation Format

Share Document