provenance studies
Recently Published Documents


TOTAL DOCUMENTS

344
(FIVE YEARS 88)

H-INDEX

36
(FIVE YEARS 6)

Author(s):  
Grzegorz Żabiński

The jubilee of Professor Andrzej Nadolski and Professor Marian Głosek is an excellent opportunity for discussing some most recent methods of technological analyses in archaeology and their applications in arms and armour studies. New opportunities are offered by Computed Tomography (CT) and by Neutron Imaging (NI). The latter is insensitive to material density; therefore details that are not detectable by X-ray or CT can be seen in NI images. A considerable progress has also been made in the field of radiocarbon dating. Yet another field are analyses of the chemical composition of smelting slag and slag inclusions in ferrous artefacts. Such analyses can be used for identification of smelting processes, as well as for provenance studies. These take a number of variables into consideration (major and trace elements, as well as isotopic ratios). What seems to be especially promising in provenance studies are isotopes of osmium (Os).


2021 ◽  
Author(s):  
Malte Willmes ◽  
clement bataille ◽  
Hannah James ◽  
Ian Moffat ◽  
Linda McMorrow ◽  
...  

Strontium isotope ratios (87Sr/86Sr) of archaeological samples (teeth and bones) can be used to track mobility and migration across geologically distinct landscapes. However, traditional interpolation algorithms and classification approaches used to generate Sr isoscapes are often limited in predicting multiscale 87Sr/86Sr patterning. Here we investigate the suitability of plant samples and soil leachates from the IRHUM database (www. irhumdatabase.com) to create a bioavailable 87Sr/86Sr map using a novel geostatistical framework. First, we generated an 87Sr/86Sr map by classifying 87Sr/86Sr values into five geologically representative isotope groups using cluster analysis. The isotope groups were then used as a covariate in kriging to integrate prior geological knowledge of Sr cycling with the information contained in the bioavailable dataset and enhance 87Sr/86Sr predictions. Our approach couples the strengths of classification and geostatistical methods to generate more accurate 87Sr/86Sr predictions (Root Mean Squared Error=0.0029) with an estimate of spatial uncertainty based on lithology and sample density. This bioavailable Sr isoscape is applicable for provenance studies in France, and the method is transferable to other areas with high sampling density. While our method is a step forward in generating accurate 87Sr/86Sr isoscapes, the remaining uncertainty also demonstrates that finemodelling of 87Sr/86Sr variability is challenging and requires more than geological maps for accurately predicting 87Sr/86Sr variations across the landscape. Future efforts should focus on increasing sampling density and developing predictive models to further quantify and predict the processes that lead to 87Sr/86Sr variability.


2021 ◽  
pp. 120624
Author(s):  
Federico Lugli ◽  
Anna Cipriani ◽  
Luigi Bruno ◽  
Francesco Ronchetti ◽  
Claudio Cavazzuti ◽  
...  
Keyword(s):  

Author(s):  
Małgorzata Kajzer ◽  
Edyta Marzec ◽  
Evangelia Kiriatzi ◽  
Noémi S. Müller

This paper presents the results of a multipronged approach to the study of the Hellenistic and Early Roman ceramic oil lamps excavated at the Agora of Nea Paphos in Cyprus. The assemblage was studied macroscopically, and selected samples were analysed through WD-XRF spectroscopy and thin section petrography, combined with refiring tests. The integrated results revealed that local production changed through time in terms of lamp shapes, manufacturing techniques and clay recipes, while imported lamps originated from a range of sources. The transformations seen in the local production correlate with changes in the origin of imported lamp supply and the impact of other centres on the local lamp manufacture. These patterns in production and supply could be most likely associated with political transformations and urban development.


2021 ◽  
Vol 13 (11) ◽  
Author(s):  
Giovanni Cavallo ◽  
Maria Pia Riccardi

Abstract Glass-based pigments have an important role in the panorama of artistic production due to the fact that their manufacturing processes involve a combination of different skills and understanding, and they have a role in disciplines ranging from glass technology to metallurgy, from glazed ceramic to stone imitation and from vitreous mosaic tesserae to painting materials. The main goal of this manuscript is to present a critical review of the literature relating to blue smalt and “yellow glass” (lead–tin yellow type II) pigments: presenting their historical background, the analytical protocol, the processes of alteration and decay and finally tracing issues. Several case studies analyzed by the authors will be presented. Particular attention was devoted to the correlation between micro-textural features and decay processes affecting the studied pigments, though the widespread heterogeneity of the analyzed materials and the variability of the artistic techniques in which the pigments were used as well as the effect of the relevant (micro-)environmental conditions dictate a cautious approach. These studies are presented in the context of information about the chain of production, the selection of the raw materials and relevant provenance studies.


2021 ◽  
Author(s):  
Carolin Aslanian ◽  
Raymond Jonckheere ◽  
Bastian Wauschkuhn ◽  
Lothar Ratschbacher

Abstract. The tools for interpreting fission-track data are evolving apace but, even so, the outcomes cannot be better than the data. Recent studies that have again taken up the issues of etching and observation have shown that both have an effect on confined-track length measurements. We report experiments concerning the effects of grain orientation, polishing, etching and observation on fission-track counts in apatite. The results cannot be generalized to circumstances other than those of the experiments, and thus do not solve the problems of track counting. Our findings nevertheless throw light on the factors affecting the track counts, and thence the sample ages, whilst raising the question: what counts as an etched surface track? This is pertinent to manual and automatic track counts and to designing training strategies for neural networks. We cannot be confident that counting prism faces and using the ζ-calibration for age calculation are adequate for dealing with all etching- and counting-related factors across all samples. Prism faces are not unproblematic for counting and other surface orientations are not per se useless. Our results suggest that a reinvestigation of the etching properties of different apatite faces could increase the range useful for dating, and so lift a severe restriction for provenance studies.


2021 ◽  
pp. SP516-2021-59
Author(s):  
C. D. Standish ◽  
R. J. Chapman ◽  
N. R. Moles ◽  
R. D. Walshaw ◽  
J. A. Sheridan

AbstractCompositional studies of natural gold usually have a geological focus, but are also important in archaeological provenancing. Both methodologies rely on compositional comparison of two sets of samples, one of which is geographically constrained. Here we describe how experiences in gold characterization resulting from geological studies are relevant to archaeology. Microchemical characterization of polished sections of natural gold identifies alloy compositions, alloy heterogeneity and mineral inclusions. Gold from all deposit types shows Cu and Sn values much lower than those recorded during numerous studies of artefacts. Inclusions in artefact gold include various Cu- and Sn-bearing compounds which indicate specific high temperature reactions that could ultimately illuminate the conditions of (s)melting. The use of LA-ICP-MS to generate a wide range of elemental discriminants for provenance studies may be compromised by alloy adulteration and/or unrepresentative analysis of natural/artefact alloys, which are commonly highly heterogeneous at the micron scale. Geological studies normally characterize only the earliest-formed (hypogene) alloy, whereas archaeology-focussed studies should entail analyses of bulk alloy compositions and impurities that may be incorporated during (s)melting. Isotopic-based provenancing alleviates many of these problems but, to date, generates regional rather than locality specific targets. A dual isotopic-compositional approach is recommended.


Sign in / Sign up

Export Citation Format

Share Document