scholarly journals Geochemical Characterization of Zircon in Fyfe Hills of the Napier Complex, East Antarctica

Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 943
Author(s):  
Mami Takehara ◽  
Kenji Horie ◽  
Tomokazu Hokada

Ultra-high temperature (UHT) metamorphism plays an essential role in the development and stabilization of continents through accretionary and collisional orogenesis. The Napier Complex, East Antarctica, preserves UHT metamorphism, and the timing is still debated. U–Pb zircon geochronology integrated with rare earth element (REE) and oxygen isotope was applied to a garnet-bearing quartzo-feldspathic gneiss to confirm the timing of UHT metamorphism in Fyfe Hills in the western part of the Napier Complex. The zircons are analyzed using a sensitive high-resolution ion microprobe (SHRIMP). The cathodoluminescence observation and U–Pb ages allowed us to classify the analytical domains into three types: inherited domains (Group I), metamorphic domains (Group II), and U–Pb system disturbed domains (Group III). The REE patterns of Group II are characterized by a weak fractionation between the middle REE and heavy REE, which reinforces the above classification. The 207Pb*/206Pb* ages of Group II have an age peak at 2501 Ma, therefore, the gneiss experienced high temperature metamorphism at 2501 Ma. δ18O of zircons are homogeneous among the three groups (5.53 ± 0.11‰, 5.51 ± 0.14‰, and 5.53 ± 0.23‰), which suggests re-equilibration of oxygen isotopes after metamorphism at ca. 2501Ma under dry UHT conditions.

1982 ◽  
Vol 203 (1) ◽  
pp. 131-139 ◽  
Author(s):  
S Visser ◽  
R Jenness ◽  
R J Mullin

Three groups of casein components were isolated from horse milk. Group I is almost insoluble at acid and neutral pH, and is rather heterogeneous on alkaline gels with or without sodium dodecyl sulphate. Group II shows strong similarity to beta-casein from other species, as concluded from its amino acid composition and its N- and C-terminal sequences. This group consists of five electrophoretically distinguishable forms, all containing ester phosphate groups but no carbohydrate. Group III is composed of C-terminal fragments of the beta-like (group II) fraction and probably arises from the action of a plasmin-like enzyme present in horse milk. It does not contain phosphate or carbohydrate. Homology of this group with bovine gamma-caseins is demonstrated. Both beta- and gamma-like caseins are more soluble at 4 degrees C than at room temperature.


2003 ◽  
Vol 45 (5) ◽  
pp. 265-268 ◽  
Author(s):  
Julia Maria Costa-Cruz ◽  
Joaquina Madalena ◽  
Deise Aparecida de Oliveira Silva ◽  
Mônica Camargo Sopelete ◽  
Dulcinéa Maria Barbosa Campos ◽  
...  

Strongyloides ratti larval extract was used for the standardization of ELISA to detect genus-specific IgE in human strongyloidiasis. Forty serum samples from monoinfected patients shedding S. stercoralis larvae (Group I), 40 from patients with other intestinal parasites (Group II), and 40 from copronegative healthy subjects (Group III) were analyzed. Genus-specific IgE levels (ELISA Index: EI) were significantly higher in the group I (EI = 1.43) than groups II (EI = 0.70) and III (EI = 0.71), showing positivity rates of 55%, 2.5% and 0%, respectively. Similarly, sera from copropositive patients had significantly higher levels of total IgE (866 IU/mL) as compared to those from group II (302 IU/mL) and III (143 IU/mL). A significant positive correlation was found between levels of Strongyloides specific-IgE and total IgE in sera from patients with strongyloidiasis. In conclusion, S. ratti heterologous extract showed to be a useful tool for detecting genus-specific IgE by ELISA, contributing for a better characterization of the immune response profile in human strongyloidiasis.


1997 ◽  
Vol 325 (2) ◽  
pp. 527-531 ◽  
Author(s):  
Naoki OHKURA ◽  
Hiroaki OKUHARA ◽  
Seiji INOUE ◽  
Kiyoshi IKEDA ◽  
Kyozo HAYASHI

Three distinct types of phospholipase A2 (PLA2) inhibitory proteins (PLIα, PLIβ, and PLIγ) were isolated from the blood plasma of the Chinese mamushi, Agkistrodonblomhoffiisiniticus. PLIα is an inhibitor that we have already purified and whose amino acid sequence we have already determined [Ohkura, Inoue, Ikeda and Hayashi (1993) J. Biochem. (Tokyo) 113, 413–419]. It inhibited selectively the group-II acidic PLA2s from Crotalidae venom. PLIβ was a 160-kDa glycoprotein having a trimeric structure composed of 50-kDa subunits. The amino acid sequence of the first 30 amino acids of the N-terminal part of the 50-kDa subunit was determined and found to have no significant homology to that of known proteins. PLIβ was a selective inhibitor against the group-II basic PLA2s from Crotalidae venom. Some amino acid residues located in or close to the interfacial binding surface of the group-II basic PLA2s were suggested to be involved in selective binding to PLIβ. PLIγ was a 100-kDa glycoprotein containing 25-kDa and 20-kDa subunits and inhibited all of the PLA2s investigated equally, including Elapidae venom PLA2s (group I), Crotalidae and Viperidae venom PLA2s (group II) and honey-bee PLA2 (group III). From the N-terminal sequences of the two subunits, PLIγ was found to be the same type of PLI that had been purified from Thailand cobra plasma.


Author(s):  
K.K. SEKHRI ◽  
C.S. ALEXANDER ◽  
H.T. NAGASAWA

C57BL male mice (Jackson Lab., Bar Harbor, Maine) weighing about 18 gms were randomly divided into three groups: group I was fed sweetened liquid alcohol diet (modified Schenkl) in which 36% of the calories were derived from alcohol; group II was maintained on a similar diet but alcohol was isocalorically substituted by sucrose; group III was fed regular mouse chow ad lib for five months. Liver and heart tissues were fixed in 2.5% cacodylate buffered glutaraldehyde, post-fixed in 2% osmium tetroxide and embedded in Epon-araldite.


1998 ◽  
Vol 80 (09) ◽  
pp. 393-398 ◽  
Author(s):  
V. Regnault ◽  
E. Hachulla ◽  
L. Darnige ◽  
B. Roussel ◽  
J. C. Bensa ◽  
...  

SummaryMost anticardiolipin antibodies (ACA) associated with antiphospholipid syndrome (APS) are directed against epitopes expressed on β2-glycoprotein I (β2GPI). Despite a good correlation between standard ACA assays and those using purified human β2GPI as the sole antigen, some sera from APS patients only react in the latter. This is indicative of heterogeneity in anti-β2GPI antibodies. To characterize their reactivity profiles, human and bovine β2GPI were immobilized on γ-irradiated plates (β2GPI-ELISA), plain polystyrene precoated with increasing cardiolipin concentrations (CL/β2GPI-ELISA), and affinity columns. Fluid-phase inhibition experiments were also carried out with both proteins. Of 56 selected sera, restricted recognition of bovine or human β2GPI occurred respectively in 10/29 IgA-positive and 9/22 IgM-positive samples, and most of the latter (8/9) were missed by the standard ACA assay, as expected from a previous study. Based on species specificity and ACA results, IgG-positive samples (53/56) were categorized into three groups: antibodies reactive to bovine β2GPI only (group I) or to bovine and human β2GPI, group II being ACA-negative, and group III being ACA-positive. The most important group, group III (n = 33) was characterized by (i) binding when β2GPI was immobilized on γ-irradiated polystyrene or cardiolipin at sufficient concentration (regardless of β2GPI density, as assessed using 125I-β2GPI); (ii) and low avidity binding to fluid-phase β2GPI (Kd in the range 10–5 M). In contrast, all six group II samples showed (i) ability to bind human and bovine β2GPI immobilized on non-irradiated plates; (ii) concentration-dependent blockade of binding by cardiolipin, suggesting epitope location in the vicinity of the phospholipid binding site on native β2GPI; (iii) and relative avidities approximately 100-fold higher than in group III. Group I patients were heterogeneous with respect to CL/β2GPI-ELISA and ACA results (6/14 scored negative), possibly reflecting antibody differences in terms of avidity and epitope specificity. Affinity fractionation of 23 sera showed the existence, in individual patients, of various combinations of antibody subsets solely reactive to human or bovine β2GPI, together with cross-species reactive subsets present in all samples with dual reactivity namely groups III and II, although the latter antibodies were poorly purified on either column. Therefore, the mode of presentation of β2GPI greatly influences its recognition by anti-β2GPI antibodies with marked inter-individual heterogeneity, in relation to ACA quantitation and, possibly, disease presentation and pathogenesis.


2015 ◽  
Vol 18 (3) ◽  
pp. 098
Author(s):  
Cem Arıtürk ◽  
Serpil Ustalar Özgen ◽  
Behiç Danışan ◽  
Hasan Karabulut ◽  
Fevzi Toraman

<p class="p1"><span class="s1"><strong>Background:</strong> The inspiratory oxygen fraction (FiO<sub>2</sub>) is usually set between 60% and 100% during conventional extracorporeal circulation (ECC). However, this strategy causes partial oxygen pressure (PaO<sub>2</sub>) to reach hyperoxemic levels (&gt;180 mmHg). During anesthetic management of cardiothoracic surgery it is important to keep PaO<sub>2</sub> levels between 80-180 mmHg. The aim of this study was to assess whether adjusting FiO<sub>2</sub> levels in accordance with body temperature and body surface area (BSA) during ECC is an effective method for maintaining normoxemic PaO<sub>2</sub> during cardiac surgery.</span></p><p class="p1"><span class="s1"><strong>Methods:</strong> After approval from the Ethics Committee of the University of Acıbadem, informed consent was given from 60 patients. FiO<sub>2</sub> adjustment strategies applied to the patients in the groups were as follows: FiO<sub>2</sub> levels were set as 0.21 × BSA during hypothermia and 0.21 × BSA + 10 during rewarming in Group I; 0.18 × BSA during hypothermia and 0.18 × BSA + 15 during rewarming in Group II; and 0.18 × BSA during hypothermia and variable with body temperature during rewarming in Group III. Arterial blood gas values and hemodynamic parameters were recorded before ECC (T1); at the 10th minute of cross clamp (T2); when the esophageal temperature (OT) reached 34°C (T3); when OT reached 36°C (T4); and just before the cessation of ECC (T5).</span></p><p class="p1"><span class="s1"><strong>Results:</strong> Mean PaO<sub>2</sub> was significantly higher in Group I than in Group II at T2 and T3 (<em>P</em> = .0001 and <em>P</em> = .0001, respectively); in Group I than in Group III at T1 (<em>P</em> = .02); and in Group II than in Group III at T2, T3, and T4 <br /> (<em>P</em> = .0001 for all). </span></p><p class="p1"><span class="s1"><strong>Conclusion: </strong>Adjustment of FiO<sub>2</sub> according to BSA rather than keeping it at a constant level is more appropriate for keeping PaO<sub>2</sub> between safe level limits. However, since oxygen consumption of cells vary with body temperature, it would be appropriate to set FiO<sub>2</sub> levels in concordance with the body temperature in the <br /> rewarming period.</span></p>


Sign in / Sign up

Export Citation Format

Share Document