scholarly journals Gel Formation at the Front of Expanding Calcium Bentonites

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 215
Author(s):  
Katherine A. Daniels ◽  
Jon F. Harrington ◽  
Antoni E. Milodowski ◽  
Simon J. Kemp ◽  
Ian Mounteney ◽  
...  

The removal of potentially harmful radioactive waste from the anthroposphere will require disposal in geological repositories, the designs of which often favour the inclusion of a clay backfill or engineered barrier around the waste. Bentonite is often proposed as this engineered barrier and understanding its long-term performance and behaviour is vital in establishing the safety case for its usage. There are many different compositions of bentonite that exist and much research has focussed on the properties and behaviour of both sodium (Na) and calcium (Ca) bentonites. This study focusses on the results of a swelling test on Bulgarian Ca bentonite that showed an unusual gel formation at the expanding front, unobserved in previous tests of this type using the sodium bentonite MX80. The Bulgarian Ca bentonite was able to swell to completely fill an internal void space over the duration of the test, with a thin gel layer present on one end of the sample. The properties of the gel, along with the rest of the bulk sample, have been investigated using ESEM, EXDA and XRD analyses and the formation mechanism has been attributed to the migration of nanoparticulate smectite through a more silica-rich matrix of the bentonite substrate. The migration of smectite clay out of the bulk of the sample has important implications for bentonite erosion where this engineered barrier interacts with flowing groundwater in repository host rocks.

2015 ◽  
Vol 79 (6) ◽  
pp. 1543-1550 ◽  
Author(s):  
S. G. Zihms ◽  
J. F. Harrington

AbstractDue to its favourable properties, in particular, low permeability and swelling capacity, bentonite has been favoured as an engineered-barrier and backfill material for the geological storage of radioactive waste. To ensure its safe long-term performance it is important to understand any changes in these properties when the material is subject to heat-emitting waste. As such, this study investigates the hydraulic response of bentonite under multi-step thermal loading subject to a constant-volume boundary condition, to represent a barrier system used in a crystalline or other hard-rock host rock. The experimental set up allows continuous measurement of the hydraulic and mechanical responses during each phase of the thermal cycle. After the initial hydration of the bentonite, the temperature was raised in 20°C increments from 20 to 80°C followed by a final step to reach 120°C. Each temperature was held constant for at least 7–10 days to allow the hydraulic transients to equilibrate. The data suggest that the permeability of bentonite appears to be sensitive to changes in temperature which may extend beyond those explained by simple changes in water viscosity. However, permeability may be boundary-condition dependent and this should be considered when designing experiments or applying these results to other repository host rocks. Either way, the magnitude of the change in permeability observed in this study is minor and its impact on the hydraulic performance of the barrier is negligible.


Author(s):  
Carl Malings ◽  
Rebecca Tanzer ◽  
Aliaksei Hauryliuk ◽  
Provat K. Saha ◽  
Allen L. Robinson ◽  
...  

2008 ◽  
Vol 56 (S 1) ◽  
Author(s):  
CC Badiu ◽  
W Eichinger ◽  
D Ruzicka ◽  
I Hettich ◽  
S Bleiziffer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document