swelling capacity
Recently Published Documents


TOTAL DOCUMENTS

316
(FIVE YEARS 164)

H-INDEX

19
(FIVE YEARS 6)

Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 117
Author(s):  
Marcelo A. Guancha-Chalapud ◽  
Liliana Serna-Cock ◽  
Diego F. Tirado

Colombia is the world’s largest producer of fique fibers (Furcraea bedinghausii), with a net production of 30,000 tons per year. This work proposes to revalue waste from the Colombian fique agroindustry. For this purpose, cellulose nanofibers were obtained from fique and used as reinforcement material to create acrylic superabsorbent hydrogels. Unreinforced acrylic hydrogels (AHR0) and acrylic hydrogels reinforced with fique nanofibers at 3% w/w (AHR3), 5% w/w (AHR5), and 10 % w/w (AHR10) were synthesized using the solution polymerization method. The best hydrogel formulation for agricultural purposes was chosen by comparing their swelling behavior, mechanical properties, and using scanning electron microscopy (SEM). By raising the nanofiber concentration to 3% (AHR3), the best-chosen formulation, the interaction between the nanofibers and the polymer matrix increased, which favored the network stability. However, beyond AHR3, there was a higher viscosity of the reactive system, which caused a reduction in the mobility of the polymer chains, thus disfavoring the swelling capacity. The reinforced hydrogel proposed in this study (AHR3) could represent a contribution to overcoming the problems of land dryness present in Colombia, an issue that will worsen in the coming years due to the climate emergency.


Author(s):  
Daria Ardant ◽  
Coralie Brumaud ◽  
Guillaume Habert

Locally available and with infinite recycling possibilities, the use of earth as building material leads to one of the lowest environmental impacts in the construction sector. Recent advances in the earth materials field have been made based on concrete and ceramics technologies to facilitate its uses in dense areas. It is possible to modify clay particle interactions and the material's whole behavior by adding inorganic dispersants and flocculants into clay paste. Earth becomes easy to cast and unmold into formworks, and by removing cement in its composition, poured earth can reach a low CO2 emission rate. Even if this technology is promising, further work has to be performed, as it cannot be implemented on earth from excavation sites with high variability. Tackling the clay nature variability is now the main issue to push this product on the market with robust properties. This research investigates the robustness of the poured earth binder. In this way, several clays (three montmorillonites, two kaolinites, and binary mixes at different proportions) were investigated. Their compacity (C) was determined following the water demand protocol with Vicat apparatus and compared to their consistency properties (liquidity and plasticity limits), and a correlation between these values is established. Different clay pastes prepared at different solid volume fractions were tested to define the influence of the clay nature on the paste consistency evolution. The results showed that clay nature for paste at high solid volume fraction does not influence constituency's evolution when their respectivecompacity is taking into account. It can be suggested that for a clay binder with a consistency close to C, which might be mandatory for poured earth application, only the swelling capacity might influence the mix design.


2021 ◽  
pp. 108201322110694
Author(s):  
Ashura Katunzi-Kilewela ◽  
Leonard MP Rweyemamu ◽  
Lilian D Kaale ◽  
Oscar Kibazohi ◽  
Roman M Fortunatus

The study established the proximate composition, pasting, and functional properties of cassava flour (CF) blended with chia seeds flour (CSF). Composite flour was prepared by blending CF with CSF in the ratios of 95:05, 90:10, 85:15, 80:20, and 75:25 with CF and CSF used as controls, respectively. The effect of blending significantly (p < 0.05) increased protein, fat, fibre, and ash contents as CSF increased. On other hand, moisture and carbohydrate contents decreased significantly. Pasting properties of composite flour blends decreased significantly (p < 0.05) as the incorporation of CSF increased and a noticeable change was observed for composite flour (75:25) except for peak time and pasting temperature. Functional properties of water absorption capacity (WAC) of CSF were significantly different with CF and composite flour blends. Oil absorption capacity (OAC) of CF and CSF were significantly different, while the composite flour blends had varied OAC due to the inclusion of the different amounts of CSF. The swelling capacity (SC) of CF and CSF were not significantly different, but composite flour blends were significantly different from both CSF and CF. The least gelation concentration (LGC) and bulk density (BD) increased significantly as chia seeds increased. Increased concentration of chia CSF in the composite flour blends showed to alter the functional properties. This study recommends composite flour 75:25 for processing semiliquid products like porridge due to reduced pasting properties values that may be associated with increased energy density compared to CF.


2021 ◽  
Vol 23 (1) ◽  
pp. 321
Author(s):  
Katarzyna Reczyńska-Kolman ◽  
Kinga Hartman ◽  
Konrad Kwiecień ◽  
Monika Brzychczy-Włoch ◽  
Elżbieta Pamuła

Due to growing antimicrobial resistance to antibiotics, novel methods of treatment of infected wounds are being searched for. The aim of this research was to develop a composite wound dressing based on natural polysaccharides, i.e., gellan gum (GG) and a mixture of GG and alginate (GG/Alg), containing lipid nanoparticles loaded with antibacterial peptide—nisin (NSN). NSN-loaded stearic acid-based nanoparticles (NP_NSN) were spherical with an average particle size of around 300 nm and were cytocompatible with L929 fibroblasts for up to 500 µg/mL. GG and GG/Alg sponges containing either free NSN (GG + NSN and GG/Alg + NSN) or NP_NSN (GG + NP_NSN and GG/Alg + NP_NSN) were highly porous with a high swelling capacity (swelling ratio above 2000%). Encapsulation of NSN within lipid nanoparticles significantly slowed down NSN release from GG-based samples for up to 24 h (as compared to GG + NSN). The most effective antimicrobial activity against Gram-positive Streptococcus pyogenes was observed for GG + NP_NSN, while in GG/Alg it was decreased by interactions between NSN and Alg, leading to NSN retention within the hydrogel matrix. All materials, except GG/Alg + NP_NSN, were cytocompatible with L929 fibroblasts and did not cause an observable delay in wound healing. We believe that the developed materials are promising for wound healing application and the treatment of bacterial infections in wounds.


2021 ◽  
Vol 15 (1) ◽  
pp. 49-54
Author(s):  
Sohair A. Darwish ◽  
Ibrahim M. Ibrahim ◽  
Nasser Y. Mostafa ◽  
Mostafa A. Radwan ◽  
Mohamed A. Sadek ◽  
...  

Introduction: Hydrogels are hydrophilic polymers which are cross-linked to form three-dimensional structures, which can absorb, swell and retain huge amounts of water or aqueous fluids. Objective: This paper reports the preparation and characterisation of Poly(2-Acrylamido-2-Methylpropane Sulphonic Acid) (PAMPS) hydrogel with different crosslinking intensities. Methodology: 2-Acrylamido-2-methylpropane sulfonic acid (AMPS) monomer was purchased from Alfa Aesar Company as reagent grade. It was used as received (>98% purity) without any further purification. PAMPS hydrogel was prepared by free radical crosslinking solution polymerization of AMPS in water at room temperature under a nitrogen blanket in cylindrical glass tubes. The characteristics of the obtained PAMPS hydrogel were compared with those of commercial sodium polyacrylates hydrogel. Results: It was found that decreasing the crosslinker weight improved the absorbance capacity but to a limit. The suggested reasons were discussed. The mixture showed higher absorbance rate than PAMPS, and bigger absorbance capacity than sodium polyacrylates. Conclusion: This paper investigates the effect of crosslinker ratio on the swelling capacity of PAMPS. It was found that as the crosslinking ratio decreases, the porosity of the hydrogel increases, thus improving the swelling capacity.


2021 ◽  
Vol 21 (105) ◽  
pp. 18839-18854
Author(s):  
EC Omah ◽  
◽  
EI Nwaudah ◽  
IS Asogwa ◽  
CR Eze

Ogi is a fermented cereal porridge usually made from single cereals such as maize (Zea mays). In traditional production, it is sometimes combined with other cereals such as sorghum or millet. It is usually in semi-solid form after production and has low shelf stability. This study was carried out to produce and evaluate the quality of ogi powder from mixtures of selected cereals (maize and sorghum), with soybean inclusion as advancement for improving the nutritive value of the product. Ogi flour was obtained from grains of maize and sorghum by weighing, sorting, soaking (for 72 hours), wet milling, sieving, dewatering, oven-drying, pulverizing and sieving through muslin cloth with maximum pore size of 20 mm. Optimal blend (70:30) for maize - sorghum ogi cumulating to 100% maize - sorghum mixture was obtained from a preliminary study; and fortified with soybean in the ratios of 90:10, 80:20, 70:30, 60:40, 50:50, and 100:0. The samples were analyzed for functional, proximate and micronutrient properties using standard methods. Results of water absorption and swelling capacity showed significant (p<0.05) differences among the samples. Proximate composition results showed significant (p<0.05) differences in all samples and ranged as follows: moisture (5.39 - 7.72%), protein (6.22 - 21. 46%), ash (2.66 - 3.64%), crude fibre (2.22 - 2.65%), crude fat (4.22 - 10.22%) and carbohydrate (51.31 - 79.14%). The micronutrient levels were improved and ranged from 166 - 360 mg/100g calcium, 1.15 - 3.22 mg/100g iron, 24.3 - 47.6 IU ß-carotene and 0.59 - 0.89 mg/100g thiamine. Soybean addition generally improved the quality of the samples. Protein increase was observed from 20% inclusion of soybean. The maximum inclusion level of 50% increased the protein content of the sample to 21.5%. Despite adding value and variety to ogi meal due to its powdered form, fortifying maize-sorghum ogi with soybean would reduce the problem of malnutrition especially among children who are usually fed ogi as infant formulae in developing countries.


Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4461
Author(s):  
Cătălina Anișoara Peptu ◽  
Elena Simona Băcăiță ◽  
Corina-Lenuta Savin (Logigan) ◽  
Marian Luțcanu ◽  
Maricel Agop

New hydrogels films crosslinked with epichlorohydrin were prepared based on alginates and carboxymethyl cellulose with properties that recommend them as potential drug delivery systems (e.g., biocompatibility, low toxicity, non-immunogenicity, hemostatic activity and the ability to absorb large amounts of water). The characterization of their structural, morphological, swelling capacity, loading/release and drug efficiency traits proved that these new hydrogels are promising materials for controlled drug delivery systems. Further, a new theoretical model, in the framework of Scale Relativity Theory, was built with to offer insights on the release process at the microscopic level and to simplify the analysis of the release process.


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 262
Author(s):  
Semiu A. Kareem ◽  
Idayatu Dere ◽  
Daniel T. Gungula ◽  
Fartisincha Peingurta Andrew ◽  
Abdullahi M. Saddiq ◽  
...  

In this study, biodegradable slow-release fertilizer (SRF) hydrogels were synthesized from hydroxyl propyl methyl cellulose (HPMC), polyvinyl alcohol (PVA), glycerol and urea (SRF1) and HPMC, PVA, glycerol, urea and blended paper (SRF2). The fertilizer hydrogels were characterized by SEM, XRD and FTIR. The swelling capacity of the hydrogels in both distilled and tap water as well as their water retention capacity in sandy soil were evaluated. The hydrogels had good swelling capacity with maximum swelling ratio of 17.2 g/g and 15.6 g/g for SRF1 and SRF2 in distilled, and 14.4 g/g and 15.2 g/g in tap water, respectively. The water retention capacity of the hydrogels in sandy soil exhibited higher water retention when compared with soil without the (SRFs). The soil with the hydrogels was found to have higher water retention than the soil without the hydrogels. The slow-release profile of the hydrogels was also evaluated. The result suggested that the prepared fertilizer hydrogels has a good controlled release capacity. The blended paper component in SRF2 was observed to aid effective release of urea, with about 87.01% release in soil at 44 days compared to the pure urea which was about 97% release within 4 days. The addition of blended paper as a second layer matrix was found to help improve the release properties of the fertilizer. The swelling kinetic of the hydrogel followed Schott’s second order model. The release kinetics of urea in water was best described by Kormeye Peppas, suggesting urea release to be by diffusion via the pores and channels of the SRF, which can be controlled by changing the swelling of the SRF. However, the release mechanism in soil is best described by first order kinetic model, suggesting that the release rate in soil is depended on concentration and probably on diffusion rate via the pores and channels of the SRF.


2021 ◽  
Vol 22 (23) ◽  
pp. 13050
Author(s):  
Tamer M. Tamer ◽  
Mosa H. Alsehli ◽  
Ahmed M. Omer ◽  
Tarek H. Afifi ◽  
Maysa M. Sabet ◽  
...  

The predominant impediments to cutaneous wound regeneration are hemorrhage and bacterial infections that lead to extensive inflammation with lethal impact. We thus developed a series of composite sponges based on polyvinyl alcohol (PVA) inspired by marjoram essential oil and kaolin (PVA/marjoram/kaolin), adopting a freeze–thaw method to treat irregular wounds by thwarting lethal bleeding and microbial infections. Microstructure analyses manifested three-dimensional interconnected porous structures for PVA/marjoram/kaolin. Additionally, upon increasing marjoram and kaolin concentrations, the pore diameters of the sponges significantly increased, recording a maximum of 34 ± 5.8 µm for PVA-M0.5-K0.1. Moreover, the porosity and degradation properties of PVA/marjoram/kaolin sponges were markedly enhanced compared with the PVA sponge with high swelling capacity. Furthermore, the PVA/marjoram/kaolin sponges exerted exceptional antibacterial performance against Escherichia coli and Bacillus cereus, along with remarkable antioxidant properties. Moreover, PVA/marjoram/kaolin sponges demonstrated significant thrombogenicity, developing high thrombus mass and hemocompatibility, in addition to their remarkable safety toward fibroblast cells. Notably, this is the first study to our knowledge investigating the effectiveness of marjoram in a polymeric carrier for prospective functioning as a wound dressing. Collectively, the findings suggest the prospective usage of the PVA-M0.5-K0.1 sponge in wound healing for hemorrhage and bacterial infection control.


2021 ◽  
Author(s):  
Thanh Huong Truong ◽  
Lenka Musilová ◽  
Věra Kašpárková ◽  
Daniela Jasenská ◽  
Petr Ponížil ◽  
...  

Abstract Novel bio-inspired conductive scaffolds composed of sodium hyaluronate containing water soluble polyaniline or polypyrrole colloidal particles (concentrations 0.108, 0.054 and 0.036 % w/w) were manufactured. For this purpose, either crosslinking with N-(3-dimethylaminopropyl-N-ethylcarbodiimide hydrochloride and N-hydroxysuccinimid or a freeze-thawing process in the presence of poly(vinylalcohol) were used. The scaffolds comprised interconnected pores with prevailing porosity values of ~30 % and pore sizes enabling the accommodation of cells. Good swelling capacity (92 – 97 %) without any sign of disintegration was typical for all samples. The elasticity modulus depended on the composition of the scaffolds, with the highest value of ~50 000 Pa obtained for the sample containing the highest content of polypyrrole particles. The scaffolds did not possess cytotoxicity and allowed cell adhesion and growth on the surface. Using the in vivo-mimicking conditions in a bioreactor, cells were also able to grow into the structure of the scaffolds. The technique of scaffold preparation used here thus overcomes the limitations of conducting polymers (e.g. poor solubility in an aqueous environment, and limited miscibility with other hydrophilic polymer matrices) and moreover leads to the preparation of cytocompatible scaffolds with potentially cell-instructive properties, which may be of advantage in the healing of damaged electro-sensitive tissues.


Sign in / Sign up

Export Citation Format

Share Document