scholarly journals The Potential Role of S-and Fe-Cycling Bacteria on the Formation of Fe-Bearing Mineral (Pyrite and Vivianite) in Alluvial Sediments from the Upper Chicamocha River Basin, Colombia

Minerals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1148
Author(s):  
Claudia Patricia Quevedo ◽  
Juan Jiménez-Millán ◽  
Gabriel Ricardo Cifuentes ◽  
Antonio Gálvez ◽  
José Castellanos-Rozo ◽  
...  

S- and Fe-cycling bacteria can decisively affect the crystallization of Fe-bearing minerals in sediments from fluvial environments. We have studied the relationships between the Fe-bearing mineral assemblage and the bacterial community composition in the sediments rich in organic matter from the upper Chicamocha river basin (Colombia). Rapid flowing sections of the river contain sediments that have a high redox potential, are poor in organic matter and are enriched in kaolinite and quartz. On the other hand, the mineral assemblage of the sediments deposited in the La Playa dam with a high content in organic matter is enriched in Fe-bearing minerals: a) vivianite and pyrite in the permanently flooded sediments of the dam and b) pyrite and goethite in the periodically emerged sediments. The bacterial community composition of these sediments reveals anthropic organic matter pollution processes and biodegradation associated with eutrophication. Moreover, periodically emerged sediments in the La Playa dam contain bacterial groups adapted to the alternation of dry and wet periods under oxic or anoxic conditions. Cell-shaped aggregates with a pyritic composition suggest that sulfate-reducing bacteria (SRB) communities were involved in the precipitation of Fe-sulfides. The precipitation of vivianite in the flooded sediments was favored by a greater availability of Fe(II), which promoted the iron-reducing bacteria (IRB) enrichment of the sediments. The presence of sulfur-oxidizing bacteria (SOB) in the flooded sediments and the activity of iron-oxidizing bacteria (IOB) in the periodically emerged sediments favored both pyrite crystallization under a high sulfide availability and the oxidation of microbially precipitated monosulfides. Moreover, IOB enhanced goethite formation in the periodically emerged sediments.

2018 ◽  
Author(s):  
Hauke Kegler ◽  
Christiane Hassenrueck ◽  
Pia Kegler ◽  
Tim C Jennerjahn ◽  
Muhammad Lukman ◽  
...  

Water quality deterioration caused by an enrichment in inorganic and organic matter due to anthropogenic inputs is one of the major local threats to coral reefs in Indonesia. However, even though bacteria are important mediators in coral reef ecosystems, little is known about the response of individual taxa and whole bacterial communities to these anthropogenic inputs. The present study is the first to investigate how bacterial community composition responds to small-scale changes in water quality in several coral reef habitats of the Spermonde Archipelago including the water column, particles and back reef sediments, on a densely populated and an uninhabited island. The main aims were to elucidate if a) water quality indicators and organic matter concentrations differ between the uninhabited and the densely populated island of the archipelago, and b) if there are differences in bacterial community composition in back-reef sediments and in the water column, which are associated with differences in water quality. Several key water quality parameters, such as inorganic nitrate and phosphate, chlorophyll a, and transparent exopolymer particles (TEP) were significantly higher at the inhabited than at the uninhabited island. Bacterial communities in sediments and particle attached communities were significantly different between the two islands with bacterial taxa commonly associated with nutrient and organic matter rich conditions occurring in higher proportions at the inhabited island. Within the individual reef habitats, variations in bacterial community composition between the islands are associated with differences in water quality. We also observed that copiotrophic, opportunistic bacterial taxa were enriched at the inhabited island with its higher chlorophyll a, dissolved organic carbon (DOC) and TEP concentrations. Given the increasing strain on tropical coastal ecosystems, this study suggests that effluents from densely populated islands lacking sewage treatment can alter bacterial communities that may be important for coral reef ecosystem function.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4555 ◽  
Author(s):  
Hauke F. Kegler ◽  
Christiane Hassenrück ◽  
Pia Kegler ◽  
Tim C. Jennerjahn ◽  
Muhammad Lukman ◽  
...  

Water quality deterioration caused by an enrichment in inorganic and organic matter due to anthropogenic inputs is one of the major local threats to coral reefs in Indonesia. However, even though bacteria are important mediators in coral reef ecosystems, little is known about the response of individual taxa and whole bacterial communities to these anthropogenic inputs. The present study is the first to investigate how bacterial community composition responds to small-scale changes in water quality in several coral reef habitats of the Spermonde Archipelago including the water column, particles, and back-reef sediments, on a densely populated and an uninhabited island. The main aims were to elucidate if (a) water quality indicators and organic matter concentrations differ between the uninhabited and the densely populated island of the archipelago, and (b) if there are differences in bacterial community composition in back-reef sediments and in the water column, which are associated with differences in water quality. Several key water quality parameters, such as inorganic nitrate and phosphate, chlorophylla, and transparent exopolymer particles (TEP) were significantly higher at the inhabited than at the uninhabited island. Bacterial communities in sediments and particle-attached communities were significantly different between the two islands with bacterial taxa commonly associated with nutrient and organic matter-rich conditions occurring in higher proportions at the inhabited island. Within the individual reef habitats, variations in bacterial community composition between the islands were associated with differences in water quality. We also observed that copiotrophic, opportunistic bacterial taxa were enriched at the inhabited island with its higher chlorophylla, dissolved organic carbon and TEP concentrations. Given the increasing strain on tropical coastal ecosystems, this study suggests that effluents from densely populated islands lacking sewage treatment can alter bacterial communities that may be important for coral reef ecosystem function.


2015 ◽  
Vol 10 (3) ◽  
pp. 533-545 ◽  
Author(s):  
Jürg B Logue ◽  
Colin A Stedmon ◽  
Anne M Kellerman ◽  
Nikoline J Nielsen ◽  
Anders F Andersson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document