scholarly journals Effect of the Substitution Position on the Electronic and Solvatochromic Properties of Isocyanoaminonaphthalene (ICAN) Fluorophores

Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2434 ◽  
Author(s):  
Sándor Lajos Kovács ◽  
Miklós Nagy ◽  
Péter Pál Fehér ◽  
Miklós Zsuga ◽  
Sándor Kéki

The properties of 1,4-isocyanoaminonaphthalene (1,4-ICAN) and 2,6-isocyanoaminonaphthalene (2,6-ICAN) isomers are discussed in comparison with those of 1,5-isocyanoaminonaphthalene (1,5-ICAN), which exhibits a large positive solvatochromic shift similar to that of Prodan. In these isocyanoaminonaphthalene derivatives, the isocyano and the amine group serve as the donor and acceptor moieties, respectively. It was found that the positions of the donor and the acceptor groups in these naphthalene derivatives greatly influence the Stokes and solvatochromic shifts, which decrease in the following order: 1,5-ICAN > 2,6-ICAN > 1,4-ICAN. According to high-level quantum chemical calculations, this order is well correlated with the charge transfer character of these compounds upon excitation. Furthermore, unlike 1,5-ICAN, the 1,4-ICAN and 2,6-ICAN isomers showed relatively high quantum yields in water, that were determined to be 0.62 and 0.21, respectively. In addition, time-resolved fluorescence experiments revealed that both the radiative and non-radiative decay rates for these three ICAN isomers varied unusually with the solvent polarity parameter ET(30). The explanations of the influence of the solvent polarity on the resulting steady-state and time-resolved fluorescence emission spectra are also discussed.

2021 ◽  
Vol 14 (2) ◽  
pp. 138
Author(s):  
Bauyrzhan Myrzakhmetov ◽  
Philippe Arnoux ◽  
Serge Mordon ◽  
Samir Acherar ◽  
Irina Tsoy ◽  
...  

Photodynamic therapy (PDT) is an innovative treatment of malignant or diseased tissues. The effectiveness of PDT depends on light dosimetry, oxygen availability, and properties of the photosensitizer (PS). Depending on the medium, photophysical properties of the PS can change leading to increase or decrease in fluorescence emission and formation of reactive oxygen species (ROS) especially singlet oxygen (1O2). In this study, the influence of solvent polarity, viscosity, concentration, temperature, and pH medium on the photophysical properties of protoporphyrin IX, pyropheophorbide-a, and Photofrin® were investigated by UV-visible absorption, fluorescence emission, singlet oxygen emission, and time-resolved fluorescence spectroscopies.


2020 ◽  
Vol 10 (3) ◽  
pp. 178-188
Author(s):  
Bipin Rooj ◽  
Ankita Dutta ◽  
Debojyoti Mukherjee ◽  
Sahidul Islam ◽  
Ujjwal Mandal

Background: Understanding the interaction between different organic dyes and carbon quantum dots helps us to understand several photo physical processes like electron transfer, energy transfer, molecular sensing, drug delivery and dye degradation processes etc. Objective: The primary objective of this study is to whether the carbon quantum dots can act as an electron donor and can participate in the different photo physical processes. Methods: In this work, Carbon Quantum Dots (CQDLs) are synthesized in most economical and simple carbonization method where petals of Nelumbo nucifera L. are used as a carbon precursor. The synthesized CQDLs were characterized by using experimental techniques like UV−Vis absorption, FT-IR, Transmission Electron Microscopy (TEM), steadystate and time-resolved fluorescence spectroscopy. Results: The spectral analysis shows that the so synthesized CQDLs are spherical in shape and its diameter is around 4.2 nm. It shows the fluorescence emission maximum at 495 nm with a quantum yield of 4%. In this work the interaction between Carbon Quantum Dots (CQDLs) and an organic dye Malachite Green (MG) is studied using fluorescence spectroscopic technique under ambient pH condition (At pH 7). The quenching mechanism of CQDLs with MG was investigated using Stern-Volmer equation and time-resolved fluorescence lifetime studies. The results show that the dominant process of fluorescence quenching is attributed to Forster Resonance Energy Transfer (FRET) having a donor acceptor distance of 53 Å where CQDLs act as a donor and MG acts as an acceptor. Conclusion: This work has a consequence that CQDLs can be used as a donor species for different photo physical processes such as photovoltaic cell, dye sensitized solar cell, and also for antioxidant activity study.


1996 ◽  
Vol 16 (2) ◽  
pp. 87-106 ◽  
Author(s):  
Sérgio T. Ferreira ◽  
Tatiana Coelho-Sampaio

Applications of intrinsic fluorescence measurements in the study of Ca2+-transport ATPases are reviewed. Since the initial reports showing that the fluorescence emission was sensitive to Ca2+ binding, a substantial amount of work has focused on the use of both steady-state and time-resolved fluorescence spectroscopy to investigate structure-function relationships in sarcoplasmic reticulum and plasma membrane Ca2+-ATPases. These studies have revealed ligand-induced conformational changes, as well as provided information on protein-protein, protein-solvent and/or protein-lipid interactions in different functional states of these proteins. The main results of these studies, as well as possible future prospects are discussed.


Sign in / Sign up

Export Citation Format

Share Document