scholarly journals Dihydrogen Bond in the Aminoborane Complex of a Nicergoline Intermediate

Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2548 ◽  
Author(s):  
Jan Čejka ◽  
Ladislav Cvak ◽  
Simona Žižková ◽  
Bohumil Kratochvíl ◽  
Alexandr Jegorov

An aminoborane side product from the nicergoline manufacture process was identified by single-crystal X-ray diffraction. As boranes of pharmaceutical molecules are quite rare, the binding potential of the BH3 group was investigated and compared with similar compounds using Cambridge Structural Database (CSD). Surprisingly, the packing was stabilized by a dihydrogen bond, which triggered a false alert for too-short contact of hydrogen atoms in IUCR checkCIF. As the dihydrogen bond concept is not widely known, such an alert might mislead crystallographers to force –CH3 optimal geometry to –BH3 groups. The B–H distances equal to or less than 1.0 Å (17% of the CSD structures) are substantially biased when analyzing the structures of aminoborane complexes in CSD. To conduct proper searching, B–H bond length normalization should be applied in the CSD search.

2004 ◽  
Vol 68 (5) ◽  
pp. 757-767 ◽  
Author(s):  
T. Mihajlović ◽  
H. Effenberger

AbstractHydrothermal synthesis produced the new compound SrCo2(AsO4)(AsO3OH)(OH)(H2O). The compound belongs to the tsumcorite group (natural and synthetic compounds with the general formula M(1)M(2)2(XO4)2(H2O,OH)2; M(1)1+,2+,3+ = Na, K, Rb, Ag, NH4, Ca, Pb, Bi, Tl; M(2)2+,3+ = Al, Mn3+, Fe3+, Co, Ni, Cu, Zn; and X5+,6+ = P, As, V, S, Se, Mo). It represents (1) the first Sr member, (2) the until now unknown [7]-coordination for the M(1) position, (3) the first proof of (partially) protonated arsenate groups in this group of compounds, and (4) a new structure variant.The crystal structure of the title compound was determined using single-crystal X-ray diffraction data. The compound is monoclinic, space group P21/a, with a = 9.139(2), b = 12.829(3), c = 7.522(2) Å, β = 114.33(3)°, V = 803.6(3) Å3, Z = 4 [wR2 = 0.065 for 3530 unique reflections]. The hydrogen atoms were located experimentally.


2013 ◽  
Vol 6 (1) ◽  
pp. 308 ◽  
Author(s):  
Mikael Elias ◽  
Dorothee Liebschner ◽  
Jurgen Koepke ◽  
Claude Lecomte ◽  
Benoit Guillot ◽  
...  

2018 ◽  
Vol 74 (3) ◽  
pp. 269-273 ◽  
Author(s):  
Alexander Ovchinnikov ◽  
Svilen Bobev

The Ga- and In-substituted bismuthides Ca11GaxBi10–x, Ca11InxBi10–x, Yb11GaxBi10–x, and Yb11InxBi10–x(x< 2) can be readily synthesized employing molten Ga or In metals as fluxes. They crystallize in the tetragonal space groupI4/mmmand adopt the Ho11Ge10structure type (Pearson codetI84; Wyckoff sequencen2m j h2e2d). The structural response to the substitution of Bi with smaller and electron-poorer In or Ga has been studied by single-crystal X-ray diffraction methods for the case of Ca11InxBi10–x[x= 1.73 (2); octabismuth undecacalcium diindium]. The refinements show that the In atoms substitute Bi only at the 8hsite. The refined interatomic distances show an unconventional – for this structure type – bond-length distribution within the anionic sublattice. The latter can be viewed as consisting of isolated Bi3−anions and [In4Bi820−] clusters for the idealized Ca11In2Bi8model. Formal electron counting and first-principle calculations show that the peculiar bonding in this compound drives the system toward an electron-precise state, thereby stabilizing the observed bond-length pattern.


Author(s):  
Yuliya V. Butina ◽  
Elena A. Danilova ◽  
Maxim V. Dmitriev ◽  
Aleksey V. Solomonov

For citation:Butina Yu.V., Danilova E.A., Dmitriev M.V., Solomonov А.V. Crystal structure of bis[1-(diaminomethylene)-thiouron-1-ium] sulfate. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 1. P. 45-49. In this work crystal data of bis[1-(diaminomethylene)-thiouron-1-ium] sulfate is shown. This compound was characterized by IR spectroscopy and elemental analysis. The monocrystal of this compound was obtained and the structure was confirmed by single X-ray analysis. Moreover, the work describes potential application of synthesized compound. Comparative characteristics of thiourea and its known salts are demonstrated. It is known, that derivatives of thiourea have several tautomeric forms, which can be different in crystalline state or in solution. Therefore, changed scheme of the synthesis of 2-imino-4-thiobiuret is proposed. Elemental cell of crystal consists of two 1-(diaminomethylene)thiouron-1-ium cations and one sulfat anion. A full set of X-ray diffraction data was deposited in the Cambridge Structural Database (deposit CCDC 1421710) and it can be gotten from the site www.ccdc.cam.ac.uk/data_request/cif.


1980 ◽  
Vol 35 (5) ◽  
pp. 522-525 ◽  
Author(s):  
Gisela Beindorf ◽  
Joachim Strähle ◽  
Wolfgang Liebelt ◽  
Kurt Dehnicke

The complexes AsPh4[Cl4V = N-Cl] and AsPh4[VOCl4] are prepared by the reaction of AsPh4Cl with Cl3VNCl and VOCl3, respectively. The IR spectra indicate C4v symmetry for the complex anions with multiple VN and VO bonds and a linear arrangement for the VNCl-group. AsPh4[VOCl4] crystallizes in the tetragonal space group P4/n with two formula units in the unit cell. The crystal structure was solved by X-ray diffraction methods (R = 0,062, 1096 observed, independent reflexions). The structure consists of AsPh4+ cations and [VOCl4]- anions with symmetry C4v. The extremely short VO bond length corresponds with a VO triple; its steric requirements cause the relatively large bond angle OVCl of 103.4°.


2000 ◽  
Vol 55 (6) ◽  
pp. 495-498 ◽  
Author(s):  
Katerina E. Gubina ◽  
Vladimir A. Ovchynnikov ◽  
Vladimir M. Amirkhanov ◽  
Viktor V. Skopenkoa ◽  
Oleg V. Shishkinb

N,N′-Tetramethyl-N"-benzoylphosphoryltriamide (I) and dimorpholido-N-benzoylphosphorylamide (II), and their sodium salts Nal, Nall were synthesized and characterized by means of IR and 1H, 31P NMR spectroscopy. The structures of I, II were determined by X-ray diffraction: I monoclinic, space group P2i/c with a = 10.162(3), b= 11.469(4), c = 12.286(4) Å , β = 94.04°, V = 1428.4(8) A 3, Z = 4, p(calcd) = 1.187 g/cm3; II monoclinic, space group C2/c with a = 15.503(4), b = 10.991(3), c = 22.000(6) Å, β = 106.39°, V = 3596.3(17) Å3, Z = 8, p(calcd.) = 1.253 g/cm3. The refinement of the structures converged at R = 0.0425 for I, and R = 0.068 for II. In both structures the molecules are connected into centrosymmetric dimers via hydrogen bonds formed by the phosphorylic oxygen atoms and hydrogen atoms of amide groups.


1978 ◽  
Vol 31 (3) ◽  
pp. 555 ◽  
Author(s):  
GI Feutrill ◽  
CL Raston ◽  
AH White

The crystal structure of the title compound has been determined at 295 K by single-crystal X-ray diffraction methods and refined by least- squares techniques to a residual of 0.049 for 1046 'observed' reflections. Crystals are monoclinic, P21/c, a 11.584(6), b 5.449(7), c 15.273(8) Ǻ, β 92.44(4)°, Z4. The pair of quinol hydrogen atoms are both located on the one benzene ring as the title indicates.


1994 ◽  
Vol 49 (1-2) ◽  
pp. 185-192 ◽  
Author(s):  
Tsutomu Okuda ◽  
Yoshihiro Kinoshita ◽  
Hiromitsu Terao ◽  
Koji Yamada

Abstract NQR and powder X-ray diffraction were observed for several bromoantimonate (III) complexes which contain CnH2n+1NH3 (n = 1 -3) or (CnH2n+1)2NH2(n = 1 -4) as a cation. The bond character, anion structure, crystal structure, and phase transition are discussed on the basis of the three-center-four-electron bond. A good correlation was found between the halogen NQR frequency and the Sb-X bond length.


Author(s):  
Anaelle Tilborg ◽  
Andrea Carletta ◽  
Johan Wouters

We present here a new structure of a 1:1 salt of trimethoprim with hemifumarate, highlighted by single-crystal X-ray diffraction and computational conformational studies. This salt was formed during cocrystallization assays conducted to combine trimethoprim and other APIs whose combination exhibits interesting properties. Theoreticalin vacuoinvestigations have been performed on the organic salt through a DFT two-dimensional conformational scan of torsion angles between the two aromatic moieties of trimethoprim. The evaluation of relative energies for hydrogen-bond interactions in the structure has also been performed. Comparison with conformational data from structures implying trimethoprim retrieved from the Cambridge Structural Database (CSD) shows good agreement with theoretical results, proving the validity of vacuumab initiocalculations in describing the energetic landscape of the molecule and thereby gain initial insight into the prediction process for possible new conformations and therefore potential new polymorphs.


2017 ◽  
Vol 23 (19) ◽  
pp. 4605-4614 ◽  
Author(s):  
Birger Dittrich ◽  
Jens Lübben ◽  
Stefan Mebs ◽  
Armin Wagner ◽  
Peter Luger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document