scholarly journals CRYSTAL STRUCTURE OF BIS[1-(DIAMINOMETHYLENE)-THIOURON-1-IUM] SULFATE

Author(s):  
Yuliya V. Butina ◽  
Elena A. Danilova ◽  
Maxim V. Dmitriev ◽  
Aleksey V. Solomonov

For citation:Butina Yu.V., Danilova E.A., Dmitriev M.V., Solomonov А.V. Crystal structure of bis[1-(diaminomethylene)-thiouron-1-ium] sulfate. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 1. P. 45-49. In this work crystal data of bis[1-(diaminomethylene)-thiouron-1-ium] sulfate is shown. This compound was characterized by IR spectroscopy and elemental analysis. The monocrystal of this compound was obtained and the structure was confirmed by single X-ray analysis. Moreover, the work describes potential application of synthesized compound. Comparative characteristics of thiourea and its known salts are demonstrated. It is known, that derivatives of thiourea have several tautomeric forms, which can be different in crystalline state or in solution. Therefore, changed scheme of the synthesis of 2-imino-4-thiobiuret is proposed. Elemental cell of crystal consists of two 1-(diaminomethylene)thiouron-1-ium cations and one sulfat anion. A full set of X-ray diffraction data was deposited in the Cambridge Structural Database (deposit CCDC 1421710) and it can be gotten from the site www.ccdc.cam.ac.uk/data_request/cif.

1987 ◽  
Vol 42 (7) ◽  
pp. 828-834 ◽  
Author(s):  
W. Frank ◽  
B. Dincher

Abstract The crystalline compounds [(CH3C6H5)2Hg,][AlCl4]2 (1), [(1,2-(CH3)2C6H4)2Hg2][AlCl4]2(2), [(1,3,5-(CH3)3C6H3)2Hg2][AlCl4]2 (3), [1,2,4,5-(CH3)4C6H2Hg2][AlCl4]2 (4) and [((CH3)6C6)2Hg2][AlCl4]2-CH3C6H5 (5) have been prepared from mercury(I)chloride, aluminium trichloride and the corresponding arenes and characterized by elem ental analysis. The crystal structure of 5 has been determ ined from single crystal X-ray diffraction data and refined to R - 0.093 for 3269 unique reflections. Crystal data: monoclinic, space group P21/c, a = 2116(1), b = 1095.1(7), c = 1880(1) pm, β - 104,9(1)°, Z = 4. Each atom of a central Hg2 unit (Hg -Hg distance 251.5 pm) is asymmetrically complexed by hexamethylbenzene, the Hg - Carene distances being in the range from 241 to 340 pm. Two distorted AlCl4 tetrahedra complete a “molecular” [arene2Hg2][AlCl4]2 unit. The shortest Hg-Cl distances are 310 and 312 pm, respectively.


1985 ◽  
Vol 40 (12) ◽  
pp. 1672-1676 ◽  
Author(s):  
Dieter Fenske ◽  
Udo Demant ◽  
Kurt Dehnicke

Abstract Ruthenium trichloride, obtained from its hydrate with thionyl chloride, reacts with excess trichloronitrom ethane yielding polymer [Ru(NO)Cl3]; by addition of triphenylmethylphosphonium chloride in dichlorom ethane (PPh3Me)2[Ru(NO)Cl4]2 · 2 CH2Cl2 is obtained, the IR spectrum of which is reported and assigned. Its crystal structure was determined with X-ray diffraction data (6404 independent observed reflexions, R = 0.068). Crystal data at -90 °C: a = 1145, b = 1591, c = 1406 pm, β = 96,0°, Z = 2, space group P21/C. The structure consists of PPh3Me⊕ cations, centrosymmetric anions [Ru(NO)Cl4]22⊖ nearly fulfilling C2h symmetry, and CH2Cl2 molecules. In the anions the Ru atoms are linked via chloro bridges; the nitrosyl groups occupy axial positions with bond distances RuN of 175 and NO of 113 pm, bond angle RuNO 172.7°.


2019 ◽  
Vol 74 (3) ◽  
pp. 289-295 ◽  
Author(s):  
Nataliya Gulay ◽  
Yuriy Tyvanchuk ◽  
Marek Daszkiewicz ◽  
Bohdan Stel’makhovych ◽  
Yaroslav Kalychak

AbstractTwo compounds in the Sc-Co-In system were obtained by arc-melting of the pure metals and their crystal structures have been determined using single crystal X-ray diffraction data. The structure of Sc3Co1.64In4 (space group P6̅, а=7.6702(5), c=3.3595(2) Å, Z=1, R1=0.0160, wR2=0.0301) belongs to the Lu3Co2−xIn4 type structure, which is closely related to the ZrNiAl and Lu3CoGa5 types. The structure of Sc10Co9In20 (space group P4/nmm, а=12.8331(1), c=9.0226(1) Å, Z=2, R1=0.0203, wR2=0.0465) belongs to the Ho10Ni9In20 type, which is closely related to HfNiGa2.


1987 ◽  
Vol 42 (4) ◽  
pp. 410-414 ◽  
Author(s):  
Aida El-Kholi ◽  
Ruth Christophersen ◽  
Ulrich Müller ◽  
Kurt Dehnicke

Abstract [N(PPh3)2][VCl3(N3S2)]·C7H8 is formed by the reaction of VCl2 (N3S2) with excess PPh3 in CH2C12 and subsequent treatment of the reaction mixture with toluene, as well as by the reaction of VCl2(N3S2) with [N(PPh3)2]Cl in CH2Cl2 in the presence of toluene. The compound forms red crystals, which have been characterized by IR spectroscopy. The crystal structure was determined by X-ray diffraction (1433 observed, independent reflexions, R = 0.070). Crystal data: mono-clinic, space group Cc, Z = 4, a = 994.1, b = 2148.0, c = 2055.2 pm, β = 90.03°. The compound consists of [N(PPh3)2]⊕ cations and [VCl3(N3S2)]⊖ anions, in which the vanadium atom is five-coordinated by threee chlorine atoms and two nitrogen atoms, and is part of a planar VN3S2 ring.


1985 ◽  
Vol 40 (10) ◽  
pp. 1320-1326 ◽  
Author(s):  
Joachim Müller ◽  
Ulrich Müller ◽  
Almuth Loss ◽  
Jörg Lorberth ◽  
Harald Donath ◽  
...  

Reaction of Me2SbBr or Et2SbBr with AgN3 in ether affords Me2SbN3 and Et:SbN3. respectively. Me2SbN3 can also be obtained from Me2SbNMe2 and HN3 in ether. Me2BiN3 from Me2BiN(SiMe3)3 and HN3 in ether. Me2SbN3 and Et2SbN3 dissolve as monomers in benzene; 1H, 13C, iaN and 15N NMR spectra of the solutions are reported. IR and Raman spectra of solid Me2SbN3 and Et2SbN, as well as the mass spectrum of Me2SbN3 are assigned. The crystal structures of Me2SbN3 and Me2BiN3 were determined by X-ray diffraction data collected at -67 °C (888 and 439 reflexions, R = 0.024 and 0.076. respectively). Both compounds are isotypic, space group Pnma. Z = 4. Crystal data: Me2SbN3, a = 843.6. b = 919.3, c = 744.1 pm: Me2BiN3, a - 870.8. b = 911.3, c = 738.4 pm. In the crystals, the metal atoms are linked via the aN atoms of the azido groups to form endless zig-zag chains. Whereas the Bi -N distances are equal. Sb-N bonds alternate with two different lengths (232 and 243 pm). Including the lone pair of electrons, the metal coordination can be described as distorted trigonal bipyramidal, with nitrogen atoms occupying the apical positions. With new X-ray diffraction data collected at -100 °C, the crystal structure of Me3PbN3 was refined (1692 reflexions, R = 0.036). Crystal data: a = 656.3, c = 1377 pm. space group P3221, Z = 3. It consists of endless metal-nitrogen chains of helical symmetry. the Pb atoms having trigonal bipyramidal coordination.


1989 ◽  
Vol 44 (5) ◽  
pp. 560-564 ◽  
Author(s):  
Gerhard Baum ◽  
Arnd Greiling ◽  
Werner Massa ◽  
Benjamin C. Hui ◽  
Jörg Lorberth

Reaction of Et3As with AsCl3 in n-pentane yields dimeric [Et3AsxAsCl3]2 in quantitative yield; sublimation in vacuo affords white crystals.X-Ray diffraction data were collected at 133 K (3149 independent observed reflections; R = 0.029. Rw = 0.026). Crystal data: monoclinic space group P21/c, a = 761.9(8). b = 1118.8(4). c = 1406.0(14) pm; β = 100.90(4)°. Ζ = 2 dimers.The dimer contains a planar As2Cl6-unit with terminal and bridging As-Cl bonds; each arsenic atom is bonded to a Et3As molecule via an arsenic-arsenic bond. The dimer thus has pseudo four- and six-coordinate arsenic atoms.


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


Chemistry ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 149-163
Author(s):  
Duncan Micallef ◽  
Liana Vella-Zarb ◽  
Ulrich Baisch

N,N′,N″,N‴-Tetraisopropylpyrophosphoramide 1 is a pyrophosphoramide with documented butyrylcholinesterase inhibition, a property shared with the more widely studied octamethylphosphoramide (Schradan). Unlike Schradan, 1 is a solid at room temperature making it one of a few known pyrophosphoramide solids. The crystal structure of 1 was determined by single-crystal X-ray diffraction and compared with that of other previously described solid pyrophosphoramides. The pyrophosphoramide discussed in this study was synthesised by reacting iso-propyl amine with pyrophosphoryl tetrachloride under anhydrous conditions. A unique supramolecular motif was observed when compared with previously published pyrophosphoramide structures having two different intermolecular hydrogen bonding synthons. Furthermore, the potential of a wider variety of supramolecular structures in which similar pyrophosphoramides can crystallise was recognised. Proton (1H) and Phosphorus 31 (31P) Nuclear Magnetic Resonance (NMR) spectroscopy, infrared (IR) spectroscopy, mass spectrometry (MS) were carried out to complete the analysis of the compound.


2020 ◽  
Vol 75 (8) ◽  
pp. 765-768
Author(s):  
Bohdana Belan ◽  
Dorota Kowalska ◽  
Mariya Dzevenko ◽  
Mykola Manyako ◽  
Roman Gladyshevskii

AbstractThe crystal structure of the phase Ce5AgxGe4−x (x = 0.1−1.08) has been determined using single-crystal X-ray diffraction data for Ce5Ag0.1Ge3.9. This phase is isotypic with Sm5Ge4: space group Pnma (No. 62), Pearson code oP36, Z = 4, a = 7.9632(2), b = 15.2693(5), c = 8.0803(2) Å; R1 = 0.0261, wR2 = 0.0460, 1428 F2 values and 48 variables. The two crystallographic positions 8d and 4c show Ge/Ag mixing, leading to a slight increase in the lattice parameters as compared to those of the pure binary compound Ce5Ge4.


2010 ◽  
Vol 95 (4) ◽  
pp. 655-658 ◽  
Author(s):  
S. Nazzareni ◽  
P. Comodi ◽  
L. Bindi ◽  
L. Dubrovinsky

Sign in / Sign up

Export Citation Format

Share Document