scholarly journals Computational Prediction of Chiral Iron Complexes for Asymmetric Transfer Hydrogenation of Pyruvic Acid to Lactic Acid

Molecules ◽  
2020 ◽  
Vol 25 (8) ◽  
pp. 1892
Author(s):  
Wan Wang ◽  
Xinzheng Yang

Density functional theory calculations reveal a formic acid-assisted proton transfer mechanism for asymmetric transfer hydrogenation of pyruvic acid catalyzed by a chiral Fe complex, FeH[(R,R)-BESNCH(Ph)CH(Ph)NH2](η6-p-cymene), with formic acid as the hydrogen provider. The rate-determining step is the hydride transfer from formate anion to Fe for the formation and dissociation of CO2 with a total free energy barrier of 28.0 kcal mol−1. A series of new bifunctional iron complexes with η6-p-cymene replaced by different arene and sulfonyl groups were built and computationally screened as potential catalysts. Among the proposed complexes, we found 1g with η6-p-cymene replaced by 4-isopropyl biphenyl had the lowest free energy barrier of 26.2 kcal mol−1 and excellent chiral selectivity of 98.5% ee.

2019 ◽  
Vol 55 (65) ◽  
pp. 9633-9636 ◽  
Author(s):  
Wan Wang ◽  
Xinzheng Yang

Density functional theory calculations reveal a proton-coupled hydride transfer mechanism with the participation of formic acid for asymmetric transfer hydrogenation of pyruvic acid catalyzed by chiral Os complexes.


2018 ◽  
Vol 17 (08) ◽  
pp. 1850050 ◽  
Author(s):  
Qiuhan Luo ◽  
Gang Li ◽  
Junping Xiao ◽  
Chunhui Yin ◽  
Yahui He ◽  
...  

Sulfonylureas are an important group of herbicides widely used for a range of weeds and grasses control particularly in cereals. However, some of them tend to persist for years in environments. Hydrolysis is the primary pathway for their degradation. To understand the hydrolysis behavior of sulfonylurea herbicides, the hydrolysis mechanism of metsulfuron-methyl, a typical sulfonylurea, was investigated using density functional theory (DFT) at the B3LYP/6-31[Formula: see text]G(d,p) level. The hydrolysis of metsulfuron-methyl resembles nucleophilic substitution by a water molecule attacking the carbonyl group from aryl side (pathway a) or from heterocycle side (pathway b). In the direct hydrolysis, the carbonyl group is directly attacked by one water molecule to form benzene sulfonamide or heterocyclic amine; the free energy barrier is about 52–58[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. In the autocatalytic hydrolysis, with the second water molecule acting as a catalyst, the free energy barrier, which is about 43–45[Formula: see text]kcal[Formula: see text]mol[Formula: see text], is remarkably reduced by about 11[Formula: see text]kcal[Formula: see text]mol[Formula: see text]. It is obvious that water molecules play a significant catalytic role during the hydrolysis of sulfonylureas.


2012 ◽  
Vol 11 (05) ◽  
pp. 1135-1147 ◽  
Author(s):  
HAN GUO ◽  
YING XUE

The density functional theory (DFT) is used to investigate the mechanism of ligand-free CuI -catalyzed N -arylation of imidazole with aryl halide. The oxidative addition/reductive elimination mechanism is adopted via two different pathways to form the same Cu(III) intermediate. Comparing two pathways, the path 1 in which the imidazolyl coordination occurs prior to the oxidative addition is more favorable, because the free energy barrier of the rate-limiting step of path 1 is lower than the barrier of the other. In addition, it leads to a relative stable intermediate which can promote the reaction to process via path 1. And the overall free energy barrier of oxidative addition to imidazole-ligated Cu(I) complex is not high enough when comparing with the diamine-promote process, which can further prove that the N -arylation of imidazole is feasible in the absence of additional ligands. Nucleophile coordination and reductive elimination steps are facile, while the oxidative addition is the rate-limiting step.


Catalysts ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 319
Author(s):  
Xiaoyun Liu ◽  
Bing Qiu ◽  
Xinzheng Yang

Inspired by the structures of the active site of lactate racemase and H2 activation mechanism of mono-iron hydrogenase, we proposed a series of sulphur–carbon–sulphur (SCS) nickel complexes and computationally predicted their potentials for catalytic hydrogenation of CO2. Density functional theory calculations reveal a metal–ligand cooperated mechanism with the participation of a sulfur atom in the SCS pincer ligand as a proton receiver for the heterolytic cleavage of H2. For all newly proposed complexes containing functional groups with different electron-donating and withdrawing abilities in the SCS ligand, the predicted free energy barriers for the hydrogenation of CO2 to formic acid are in a range of 22.2–25.5 kcal/mol in water. Such a small difference in energy barriers indicates limited contributions of those functional groups to the charge density of the metal center. We further explored the catalytic mechanism of the simplest model complex for hydrogenation of formic acid to formaldehyde and obtained a total free energy barrier of 34.6 kcal/mol for the hydrogenation of CO2 to methanol.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 101 ◽  
Author(s):  
Bing Qiu ◽  
Wan Wang ◽  
Xinzheng Yang

Inspired by the active site structures of lactate racemase and recently reported sulphur–carbon–sulphur (SCS) nickel pincer complexes, a series of scorpion-like SCS nickel pincer complexes with an imidazole tail and asymmetric claws was proposed and examined computationally as potential catalysts for the asymmetric transfer hydrogenation of 1-acetonaphthone. Density functional theory calculations reveal a proton-coupled hydride transfer mechanism for the dehydrogenation of (R)-(+)-1-phenyl-ethanol and the hydrogenation of 1-acetonaphthone to produce (R)-(+)-1-(2-naphthyl)ethanol and (S)-(−)-1-(2-naphthyl)ethanol. Among all proposed Ni complexes, 1Ph is the most active one with a rather low free energy barrier of 24 kcal/mol and high enantioselectivity of near 99% enantiomeric excess (ee) for the hydrogenation of prochiral ketones to chiral alcohols.


2021 ◽  
Vol 3 ◽  
pp. e16
Author(s):  
Mads Koerstz ◽  
Anders S. Christensen ◽  
Kurt V. Mikkelsen ◽  
Mogens Brøndsted Nielsen ◽  
Jan H. Jensen

The dihydroazulene/vinylheptafulvene (DHA/VHF) thermocouple is a promising candidate for thermal heat batteries that absorb and store solar energy as chemical energy without the need for insulation. However, in order to be viable the energy storage capacity and lifetime of the high energy form (i.e., the free energy barrier to the back reaction) of the canonical parent compound must be increased significantly to be of practical use. We use semiempirical quantum chemical methods, machine learning, and density functional theory to virtually screen over 230 billion substituted DHA molecules to identify promising candidates. We identify a molecule with a predicted energy density of 0.38 kJ/g, which is significantly larger than the 0.14 kJ/g computed for the parent compound. The free energy barrier to the back reaction is 11 kJ/mol higher than the parent compound, which should correspond to a half-life of about 10 days—4 months. This is considerably longer than the 3–39 h (depending on solvent) observed for the parent compound and sufficiently long for many practical applications. Our paper makes two main important contributions: (1) a novel and generally applicable methodological approach that makes screening of huge libraries for properties involving chemical reactivity with modest computational resources, and (2) a clear demonstration that the storage capacity of the DHA/VHF thermocouple cannot be increased to >0.5 kJ/g by combining simple substituents.


2020 ◽  
Vol 73 (1) ◽  
pp. 30
Author(s):  
Yunhan Yang ◽  
Fenji Li ◽  
Cuicui Yang ◽  
Lijuan Jia ◽  
Lijuan Yang ◽  
...  

The insertion of CO2 into epoxides and aziridines has been studied using density functional theory (B3LYP) and ab initio (MP2) methods, and the effect of substitution for the two reactions are further explored. It is found that the reactivity of epoxides and aziridines are similar, and insertion of CO2 proceeds through a concerted mechanism. The substitutions of methyl and phenyl does not change the reaction mechanism, but the transition state for the substitution on the attacking position becomes loose with a lower free energy barrier. The substitutions of methyl and phenyl decrease the free energy barrier, with phenyl substitution having a greater affect. The results also show that the free energy barriers for the insertions of CO2 into aziridines are ~10kcalmol−1 lower than the corresponding reactions of CO2 with epoxides.


2020 ◽  
Author(s):  
Mads Koerstz ◽  
Anders S. Christensen ◽  
Kurt V. Mikkelsen ◽  
Mogens Brøndsted Nielsen ◽  
Jan H. Jensen

<div>The dihydroazulene/vinylheptafulvene (DHA/VHF) thermocouple is a promising can- didate for thermal heat batteries that absorb and store solar energy as chemical energy without the need for insulation. However, in order to be viable the energy storage capacity and lifetime of the high energy form (i.e. the free energy barrier to the back reaction) of the canonical parent compound must be increased significantly to be of practical use. We use semiempirical quantum chemical methods, machine learning, and density functional theory to virtually screen over 230 billion substituted DHA molecules to identify promis- ing candidates. We identify a molecule with a predicted energy density of 0.38 kJ/g, which is significantly larger than the 0.14 kJ/g computed for the parent compound. The free energy barrier to the back reaction is 11 kJ/mol higher than the parent compound, which should correspond to a half-life of about 10 days - 4 months. This is considerably longer than the 3-39 hours (depending on solvent) observed for the parent compound and sufficiently long for many practical applications. However, the main conclusion of this study is that there are no molecules among the 230 billion with a storage density approaching 1 kJ/g.<br></div>


2020 ◽  
Author(s):  
Mads Koerstz ◽  
Anders S. Christensen ◽  
Kurt V. Mikkelsen ◽  
Mogens Brøndsted Nielsen ◽  
Jan H. Jensen

<div>The dihydroazulene/vinylheptafulvene (DHA/VHF) thermocouple is a promising can- didate for thermal heat batteries that absorb and store solar energy as chemical energy without the need for insulation. However, in order to be viable the energy storage capacity and lifetime of the high energy form (i.e. the free energy barrier to the back reaction) of the canonical parent compound must be increased significantly to be of practical use. We use semiempirical quantum chemical methods, machine learning, and density functional theory to virtually screen over 230 billion substituted DHA molecules to identify promis- ing candidates. We identify a molecule with a predicted energy density of 0.38 kJ/g, which is significantly larger than the 0.14 kJ/g computed for the parent compound. The free energy barrier to the back reaction is 11 kJ/mol higher than the parent compound, which should correspond to a half-life of about 10 days - 4 months. This is considerably longer than the 3-39 hours (depending on solvent) observed for the parent compound and sufficiently long for many practical applications. However, the main conclusion of this study is that there are no molecules among the 230 billion with a storage density approaching 1 kJ/g.<br></div>


2014 ◽  
Vol 900 ◽  
pp. 327-332
Author(s):  
Fu Ting Xia ◽  
Wen Yi Li ◽  
Zhi Yang ◽  
Hua Zhu

We have performed density functional theory calculations on the alkaline hydrolysis of diethyl p-chlorophenyl phosphate and triethyl phosphate in the gas phase and in solution. It is found that the two hydrolysis reactions proceed through associative mechanism. The second step of hydrolysis reaction has a very low energy barrier fro diethyl p-chlorophenyl phosphate. For triethyl phosphate, the free energy barrier for the second step is higher both in the gas phase and in solution, indication the second step is the rate-determining step. The free energies of all stationary points and the free energy barrier for all the processes in solution are higher than those in the gas phase. Our calculations provide a comprehensive data set and allow re-interpretation of previous experimental and theoretical studies, and new experiment is proposed to trace reactions both in the gas phase and in solution.


Sign in / Sign up

Export Citation Format

Share Document