scholarly journals In Silico Evaluation of the Effectivity of Approved Protease Inhibitors against the Main Protease of the Novel SARS-CoV-2 Virus

Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2529 ◽  
Author(s):  
Phaedra Eleftheriou ◽  
Dionysia Amanatidou ◽  
Anthi Petrou ◽  
Athina Geronikaki

The coronavirus disease, COVID-19, caused by the novel coronavirus SARS-CoV-2, which first emerged in Wuhan, China and was made known to the World in December 2019 turned into a pandemic causing more than 126,124 deaths worldwide up to April 16th, 2020. It has 79.5% sequence identity with SARS-CoV-1 and the same strategy for host cell invasion through the ACE-2 surface protein. Since the development of novel drugs is a long-lasting process, researchers look for effective substances among drugs already approved or developed for other purposes. The 3D structure of the SARS-CoV-2 main protease was compared with the 3D structures of seven proteases, which are drug targets, and docking analysis to the SARS-CoV-2 protease structure of thirty four approved and on-trial protease inhibitors was performed. Increased 3D structural similarity between the SARS-CoV-2 main protease, the HCV protease and α-thrombin was found. According to docking analysis the most promising results were found for HCV protease, DPP-4, α-thrombin and coagulation Factor Xa known inhibitors, with several of them exhibiting estimated free binding energy lower than −8.00 kcal/mol and better prediction results than reference compounds. Since some of the compounds are well-tolerated drugs, the promising in silico results may warrant further evaluation for viral anticipation. DPP-4 inhibitors with anti-viral action may be more useful for infected patients with diabetes, while anti-coagulant treatment is proposed in severe SARS-CoV-2 induced pneumonia.

Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5501
Author(s):  
Teresa L. Augustin ◽  
Roxanna Hajbabaie ◽  
Matthew T. Harper ◽  
Taufiq Rahman

The ongoing pandemic caused by the novel coronavirus has been the greatest global health crisis since the Spanish flu pandemic of 1918. Thus far, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in over 1 million deaths, and there is no cure or vaccine to date. The recently solved crystal structure of the SARS-CoV-2 main protease has been a major focus for drug-discovery efforts. Here, we present a fragment-guided approach using ZINCPharmer, where 17 active fragments known to bind to the catalytic centre of the SARS-CoV-2 main protease (SARS-CoV-2 Mpro) were used as pharmacophore queries to search the ZINC databases of natural compounds and natural derivatives. This search yielded 134 hits that were then subjected to multiple rounds of in silico analyses, including blind and focused docking against the 3D structure of the main protease. We scrutinised the poses, scores, and protein–ligand interactions of 15 hits and selected 7. The scaffolds of the seven hits were structurally distinct from known inhibitor scaffolds, thus indicating scaffold novelty. Our work presents several novel scaffolds as potential candidates for experimental validation against SARS-CoV-2 Mpro.


Author(s):  
Sarfraz Ahmad ◽  
Muhammad Usman Mirza ◽  
Yean Kee Lee ◽  
Mamoona Nazir ◽  
Noorsaadah Abdul Rahman ◽  
...  

Author(s):  
Milan Sencanski ◽  
Vladimir Perovic ◽  
Snezana Pajovic ◽  
Miroslav Adzic ◽  
Slobodan Paessler ◽  
...  

<p>The SARS-CoV-2 outbreak caused an unprecedented global public health threat, having a high transmission rate with currently no drugs or vaccines approved. An alternative powerful additional approach to counteract COVID-19 is <em>in silico</em> drug repurposing. The SARS-CoV-2 main protease is essential for viral replication and an attractive drug target. In this study, we used the virtual screening (VS) protocol with both long-range and short-range interactions to select candidate SARS-CoV-2 main protease inhibitors. First, the ISM applied for Small Molecules was used for searching the Drugbank database and further followed by molecular docking. After <em>in silico</em> screening of drug space, we identified 57 drugs as potential SARS-CoV-2 main protease inhibitors that we propose for further experimental testing.</p>


Author(s):  
Md Ali ◽  
Anjumana Nur ◽  
Mst Khatun ◽  
Raju Dash ◽  
Md Rahman ◽  
...  

2021 ◽  
Vol 9 (4) ◽  
pp. 472-480
Author(s):  
Gauravi N Trivedi ◽  
◽  
Janhavi T Karlekar ◽  
Khushbu Dhimmar ◽  
Hetal kumar Panchal ◽  
...  

Main protease (Mpro) and Spike (S) proteins are said potential drug targets of COVID-19. Pneumonia like respiratory illness caused by SARS-CoV-2 is spreading rapidly due to its replication and transmission rate. Protease is the protein that is involved in both replication and transcription. Since CoV-2 shares, genomic similarity with CoV and MERS-CoV, drugs from previous outbreaks are used as primary treatment of the disease. In-silico drug development strategies are said to be faster and effective than in-vitro with a lesser amount of risk factors. Fragment Based Drug Designing (FBDD), also known as rational drug design in which a potential target protein is selected and docked with a lead-like molecule that eventually leads to drug development. Nine (9) drugs that are currently being used to treat patients of coronavirus were selected in this study from the latest literature review and fragmented as per rules followed by crosslinking of drug fragments using editor tools. These native drugs and synthesized drugs were then docked against the main protease. Results of the study revealed that one of the crosslinked lead-like compounds showed a higher binding affinity (∆G) more than any of the native compounds. Further, the results of this study suggested that the combination of potential drugs can be an effective way to develop new drugs to treat a deadly disease.


2020 ◽  
Author(s):  
Marwah Karim ◽  
MD Nazrul Islam ◽  
G. M. Nurnabi Azad Jewel

AbstractOnce believed to be a commensal bacteria, Enterococcus faecium has recently emerged as an important nosocomial pathogen worldwide. A recent outbreak of E. faecium unrevealed natural and in vitro resistance against a myriad of antibiotics namely ampicillin, gentamicin and vancomycin due to over-exposure of the pathogen to these antibiotics. This fact combined with the ongoing threat demands the identification of new therapeutic targets to combat E. faecium infections.In this present study, comparative proteome analysis, subtractive genomic approach, metabolic pathway analysis and additional drug prioritizing parameters were used to propose a potential novel drug targets for E. faecium strain DO. Comparative genomic analysis of Kyoto Encyclopedia of Genes and Genomes annotated metabolic pathways identified a total of 207 putative target proteins in E. faecium DO that showed no similarity to human proteins. Among them 105 proteins were identified as essential novel proteins that could serve as potential drug targets through further bioinformatic approaches; such as-prediction of subcellular localization, calculation of molecular weight, and web-based investigation of 3D structural characterization. Eventually 19 non-homologous essential proteins of E. faecium DO were prioritized and proved to have the eligibility to become novel broad-spectrum antibiotic targets. Among these targets aldehyde-alcohol dehydrogenase was found to be involved in maximum pathways, and therefore, was chosen as novel drug target. Interestingly, aldehyde-alcohol dehydrogenase enzyme contains two domains namely acetaldehyde dehydrogenase and alcohol dehydrogenase, on which a 3D structure homology modeling and in silico molecular docking were performed. Finally, eight molecules were confirmed as the most suitable ligands for aldehyde-alcohol dehydrogenase and hence proposed as the potential inhibitors of this target.In conclusion, being human non-homologous, aldehyde-alcohol dehydrogenase protein can be targeted for potential therapeutic drug development in future. However, laboratory based experimental research should be performed to validate our findings in vivo.


2020 ◽  
Author(s):  
Abhisek Dwivedy ◽  
Richard Mariadasse ◽  
Mohammed Ahmed ◽  
Deepsikha Kar ◽  
Jeyaraman Jeyakanthan ◽  
...  

Apart from the canonical fingers, palm and thumb domains, the RNA dependent RNA polymerases (RdRp) from the viral order Nidovirales possess two additional domains. Of these, the function of the Nidovirus RdRp associated nucleotidyl transferase domain (NiRAN) remains unanswered. The elucidation of the 3D structure of the RdRp from the novel coronavirus – SARS-CoV2, provided the first ever insights into the domain organisation and possible functional characteristics of the NiRAN domain. Using in silico tools, this study predicts that the NiRAN domain assumes a kinase or phosphotransferase like fold and binds GTP and UTP at its proposed active site. Additionally, using molecular docking this study predicts the binding of five well characterized anti-microbial compounds at the NiRAN domain active site and their drug-likeliness and DFT properties. In line with the current global COVID-19 pandemic urgency, this study provides a new target and potential lead compounds for drug repurposing against SARS-CoV2.


Sign in / Sign up

Export Citation Format

Share Document