scholarly journals Halogenated Diazabutadiene Dyes: Synthesis, Structures, Supramolecular Features, and Theoretical Studies

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5013
Author(s):  
Valentine G. Nenajdenko ◽  
Namiq G. Shikhaliyev ◽  
Abel M. Maharramov ◽  
Khanim N. Bagirova ◽  
Gulnar T. Suleymanova ◽  
...  

Novel halogenated aromatic dichlorodiazadienes were prepared via copper-mediated oxidative coupling between the corresponding hydrazones and CCl4. These rare azo-dyes were characterized using 1H and 13C NMR techniques and X-ray diffraction analysis for five halogenated dichlorodiazadienes. Multiple non-covalent halogen···halogen interactions were detected in the solid state and studied by DFT calculations and topological analysis of the electron density distribution within the framework of Bader’s theory (QTAIM method). Theoretical studies demonstrated that non-covalent halogen···halogen interactions play crucial role in self-assembly of highly polarizable dichlorodiazadienes. Thus, halogen bonding can dictate a packing preference in the solid state for this class of dichloro-substituted heterodienes, which could be a convenient tool for a fine tuning of the properties of this novel class of dyes.

2020 ◽  
Vol 235 (10) ◽  
pp. 477-480 ◽  
Author(s):  
Alexander G. Tskhovrebov ◽  
Alexander S. Novikov ◽  
Andreii S. Kritchenkov ◽  
Victor N. Khrustalev ◽  
Matti Haukka

AbstractA synthesis of the trans-dibromogold(III) t-Bu-Xantphos complex and its self-assembly into infinite 1-dimensional chain in the solid state is reported. The new complex characterized using elemental analyses (C, H, N), ESI-MS, 1H and 13C NMR techniques and X-ray diffraction analysis. Results of DFT calculations followed by the topological analysis of the electron density distribution within the framework of QTAIM method at the ωB97XD/DZP-DKH level of theory reveal that strength of attractive intermolecular non-covalent interactions Br···Br in the crystal is 1.2–1.6 kcal/mol.


2010 ◽  
Vol 97 (11-12) ◽  
pp. 1055-1066 ◽  
Author(s):  
Ma de la Concepción Foces-Foces ◽  
Félix Hernández Cano ◽  
Rosa Ma Claramunt ◽  
Alain Fruchier ◽  
José Elguero

1993 ◽  
Vol 58 (12) ◽  
pp. 2944-2954 ◽  
Author(s):  
Michal Hušák ◽  
Bohumil Kratochvíl ◽  
Petr Sedmera ◽  
Josef Stuchlík ◽  
Alexandr Jegorov

Conformational analysis studied by 2D NMR techniques and X-ray diffraction methods are reported for the semisynthetic ergot alkaloid - terguride, in the form of free base and as the protonated species. The structure of terguride hydrogen maleate monohydrate (C20H29N4O)+(C4H3O4)- . H2O (II) was solved by direct methods and refined anisotropically to an Rvalue of 0.068 for 1 991 unique observed reflections. The title compound crystallizes in the triclinic space group P1 with lattice parameters a = 7.061(2), b = 9.205(1), c = 12.223(4) Å, α = 96.36(2), β = 107.15(2), γ = 106.67(1)°. Studies revealed that terguride monohydrate (I) and its protonized form (terguride hydrogen maleate monohydrate) possesses the identical conformations both in solutions and in the solid state - an envelope for C and Chair for D ergoline rings.


2005 ◽  
Vol 61 (4) ◽  
pp. 443-448 ◽  
Author(s):  
S. Scheins ◽  
M. Messerschmidt ◽  
P. Luger

The electron density distribution of morphine hydrate has been determined from high-resolution single-crystal X-ray diffraction measurements at 25 K. A topological analysis was applied and, in order to analyze the submolecular transferability based on an experimental electron density, a partitioning of the molecule into atomic regions was carried out, making use of Bader's zero-flux surfaces to yield atomic volumes and charges. The properties obtained were compared with the theoretical calculations of smaller fragment molecules, from which the complete morphine molecule can be reconstructed, and with theoretical studies of another opiate, Oripavine PEO, reported in the literature.


2018 ◽  
Vol 74 (3) ◽  
pp. 386-391 ◽  
Author(s):  
Hongguo Hao ◽  
Yuchen Wang ◽  
Suxian Yuan ◽  
Dacheng Li ◽  
Junshan Sun

Two new two-dimensional lanthanide coordination polymers, namely poly[[tetra-μ2-acetato-tetraaquabis(μ4-biphenyl-3,3′,5,5′-tetracarboxylato)tetrakis(dimethylacetamide)tetraterbium(III)] pentahydrate], {[Tb4(C16H6O8)2(C2H3O2)4(C4H9NO)4(H2O)4]·5H2O}n, (1), and poly[[tetra-μ2-acetato-tetraaquabis(μ5-biphenyl-3,3′,5,5′-tetracarboxylato)tetrakis(dimethylacetamide)tetraeuropium(III)] tetrahydrate], {[Eu4(C16H6O8)2(C2H3O2)4(C4H9NO)4(H2O)4]·4H2O}n, (2), have been synthesized from biphenyl-3,3′,5,5′-tetracarboxylic acid (H4bpt) and Ln(NO3)3·6H2O (Ln = Tb and Eu) under solvothermal conditions. Single-crystal X-ray structure analysis shows that the two compounds are isostructural and crystallize in the monoclinicP21/nspace group. The crystal structures are constructed from bpt4−ligands (as linkers) and {Ln2(μ2-CH3COO)2} building units (as nodes), which topological analysis shows to be a (4,6)-connected network withsqltopology. Compounds (1) and (2) have been characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA) and fluorescence analysis in the solid state. In addition, a magnetic investigation shows the presence of antiferromagnetic interactions in compound (1).


2017 ◽  
Vol 73 (4) ◽  
pp. 314-318 ◽  
Author(s):  
Xu Wei ◽  
Jian-Hua Li ◽  
Qiu-Ying Huang ◽  
Xiang-Ru Meng

The unsymmetrical N-heterocyclic ligand 1-[(benzotriazol-1-yl)methyl]-1H-1,3-imidazole (bmi) has three potential N-atom donors and can act in monodentate or bridging coordination modes in the construction of complexes. In addition, the bmi ligand can adopt different coordination conformations, resulting in complexes with different structures due to the presence of the flexible methylene spacer. Two new complexes, namely bis{1-[(benzotriazol-1-yl)methyl]-1H-1,3-imidazole-κN3}dibromidomercury(II), [HgBr2(C10H9N5)2], and bis{1-[(benzotriazol-1-yl)methyl]-1H-1,3-imidazole-κN3}diiodidomercury(II), [HgI2(C10H9N5)2], have been synthesized through the self-assembly of bmi with HgBr2or HgI2. Single-crystal X-ray diffraction shows that both complexes are mononuclear structures, in which the bmi ligands coordinate to the HgIIions in monodentate modes. In the solid state, both complexes display three-dimensional networks formed by a combination of hydrogen bonds and π–π interactions. The IR spectra and PXRD patterns of both complexes have also been recorded.


2020 ◽  
Vol 235 (1-2) ◽  
pp. 47-51
Author(s):  
Arpita Dutta ◽  
Suven Das ◽  
Purak Das ◽  
Suvendu Maity ◽  
Prasanta Ghosh

AbstractN-(N-benzoyl glycinyl)-N,N′-dicyclohexylurea was synthesised by conjugating N-benzoyl glycine and dicyclohexylcarbodiimide (DCC) using triethylamine as base catalyst. A single crystal X-ray diffraction study reveals that the compound self-assembles into a supramolecular sheet structure by intermolecular N–H · · · O, C–H · · · O hydrogen bonding and non-bonding van der Waals interactions. A high resolution transmission electronic microscopic (HR-TEM) image of the compound exhibits formation of fibrils in the solid state.


2018 ◽  
Vol 233 (6) ◽  
pp. 371-377 ◽  
Author(s):  
Margarita Bulatova ◽  
Anna A. Melekhova ◽  
Alexander S. Novikov ◽  
Daniil. M. Ivanov ◽  
Nadezhda A. Bokach

AbstractThe crystal structure of [Cu2(μ-O)(μ-I)2(CNXyl)4]·I2(2·I2) was determined from single-crystal X-ray diffraction data. The adduct2·I2represents the first example of structurally characterized isocyanide-copper(II) complexes. In the structure of2·I2,2forms independent chains connected through molecular iodine via I···I–I···I halogen bonding. The DFT calculations and topological analysis of the electron density distribution within the formalism of Bader’s theory (QTAIM method) were performed for model complex2·I2and the obtained results allowed the attribution of these contacts to moderate strength (3.8–5.3 kcal/mol) non-covalent contacts exhibiting some covalent character.


2005 ◽  
Vol 3 (4) ◽  
pp. 683-704 ◽  
Author(s):  
Isabel Iriepa ◽  
F. Javier Villasante ◽  
Enrique Gálvez ◽  
Antonio Herrera ◽  
Angel Sánchez ◽  
...  

AbstractThis paper synthesizes N-substituted phthalimides derived from nitrogen heterocycles as potential 5-HT4 ligands by using the Mitsunobu reaction. Conformational studies of some of the new compounds have been conducted using 1H and 13C-NMR spectroscopy. Proton and carbon resonances were achieved through the application of one-dimensional selective NOE, two-dimensional NMR techniques-homonuclear COSY-45, NOESY and heteronuclear 1H-13C HMQC correlated spectroscopy- and double resonance experiments. The crystal structure of compound 1 was determined by X-ray diffraction.


Sign in / Sign up

Export Citation Format

Share Document