Two novel lanthanide(III) organic frameworks based on a biphenyltetracarboxylate ligand: synthesis, structure and magnetic and luminescence properties

2018 ◽  
Vol 74 (3) ◽  
pp. 386-391 ◽  
Author(s):  
Hongguo Hao ◽  
Yuchen Wang ◽  
Suxian Yuan ◽  
Dacheng Li ◽  
Junshan Sun

Two new two-dimensional lanthanide coordination polymers, namely poly[[tetra-μ2-acetato-tetraaquabis(μ4-biphenyl-3,3′,5,5′-tetracarboxylato)tetrakis(dimethylacetamide)tetraterbium(III)] pentahydrate], {[Tb4(C16H6O8)2(C2H3O2)4(C4H9NO)4(H2O)4]·5H2O}n, (1), and poly[[tetra-μ2-acetato-tetraaquabis(μ5-biphenyl-3,3′,5,5′-tetracarboxylato)tetrakis(dimethylacetamide)tetraeuropium(III)] tetrahydrate], {[Eu4(C16H6O8)2(C2H3O2)4(C4H9NO)4(H2O)4]·4H2O}n, (2), have been synthesized from biphenyl-3,3′,5,5′-tetracarboxylic acid (H4bpt) and Ln(NO3)3·6H2O (Ln = Tb and Eu) under solvothermal conditions. Single-crystal X-ray structure analysis shows that the two compounds are isostructural and crystallize in the monoclinicP21/nspace group. The crystal structures are constructed from bpt4−ligands (as linkers) and {Ln2(μ2-CH3COO)2} building units (as nodes), which topological analysis shows to be a (4,6)-connected network withsqltopology. Compounds (1) and (2) have been characterized by elemental analysis, IR spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA) and fluorescence analysis in the solid state. In addition, a magnetic investigation shows the presence of antiferromagnetic interactions in compound (1).

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Runmei Ding ◽  
Zixin He ◽  
Meilin Wang ◽  
Danian Tian ◽  
Peipei Cen

AbstractBased on 2-(4-pyridyl)-terephthalate (H2pta) and oxalate ligands, two new lanthanide-containing coordination polymers (CPs), [Tb(pta)(C2O4)0.5(H2O)2)]·2H2O (1) and [Sm(pta)(C2O4)0.5(H2O)2)]·2H2O (2), have been synthesized under solvothermal conditions. The structures of both 1 and 2 have been determined by single-crystal X-ray diffraction. Infrared, elemental analysis, powder X-ray diffraction and thermogravimetric analysis data are also presented. The crystals of 1 and 2 exhibit isostructural layer-like networks, crystallizing in the triclinic space group P$‾{1}$. The layers are further stabilized and associated into 3D architectures through hydrogen bonding. Remarkably, the CPs 1 and 2 exhibit excellent water stability and remarkable thermostability with thermal decomposition temperatures of more than 420 °C.


2019 ◽  
Vol 75 (2) ◽  
pp. 141-149 ◽  
Author(s):  
Feng Su ◽  
Cheng-Yong Zhou ◽  
Lin-Tao Wu ◽  
Xi Wu ◽  
Chun Han ◽  
...  

Coordination polymers constructed from conjugated organic ligands and metal ions with a d 10 electronic configuration exhibit intriguing properties for chemical sensing and photochemistry. A ZnII-based coordination polymer, namely poly[aqua(μ6-biphenyl-3,3′,5,5′-tetracarboxylato)(μ2-4,4′-bipyridine)dizinc(II)], [Zn2(C16H6O8)(C10H8N2)(H2O)2] n or [Zn2(m,m-bpta)(4,4′-bipy)(H2O)2] n , was synthesized from a mixture of biphenyl-3,3′,5,5′-tetracarboxylic acid [H4(m,m-bpta)], 4,4′-bipyridine (4,4′-bipy) and Zn(NO3)2·6H2O under solvothermal conditions. The title complex has been structurally characterized by IR spectroscopy, elemental analysis, single-crystal X-ray diffraction and powder X-ray diffraction analysis, and features a μ6-coordination mode. The ZnII ions adopt square-pyramidal geometries and are bridged by two syn–syn carboxylate groups to form [Zn2(COO)2] secondary buildding units (SBUs). The SBUs are crosslinked by (m,m-bpta)4− ligands to produce a two-dimensional grid-like layer that exhibits a stair-like structure along the a axis. Adjacent layers are linked by 4,4′-bipy ligands to form a three-dimensional network with a {44.610.8}{44.62} topology. In the solid state, the complex displays a strong photoluminescence and an excellent solvent stability. In addition, the luminescence sensing results indicate a highly selective and sensitive sensing for Fe3+ ions.


2020 ◽  
Vol 76 (11) ◽  
pp. 1024-1033
Author(s):  
Fang-Hua Zhao ◽  
Shi-Yao Li ◽  
Wen-Yu Guo ◽  
Zi-Hao Zhao ◽  
Xiao-Wen Guo ◽  
...  

Two new CdII MOFs, namely, two-dimensional (2D) poly[[[μ2-1,4-bis(1H-benzimidazol-1-yl)butane](μ2-heptanedioato)cadmium(II)] tetrahydrate], {[Cd(C7H10O4)(C18H18N4)]·4H2O} n or {[Cd(Pim)(bbimb)]·4H2O} n (1), and 2D poly[diaqua[μ2-1,4-bis(1H-benzimidazol-1-yl)butane](μ4-decanedioato)(μ2-decanedioato)dicadmium(II)], [Cd2(C10H16O4)2(C18H18N4)(H2O)2] n or [Cd(Seb)(bbimb)0.5(H2O)] n (2), have been synthesized hydrothermally based on the 1,4-bis(1H-benzimidazol-1-yl)butane (bbimb) and pimelate (Pim2−, heptanedioate) or sebacate (Seb2−, decanedioate) ligands. Both MOFs were structurally characterized by single-crystal X-ray diffraction. In 1, the CdII centres are connected by bbimb and Pim2− ligands to generate a 2D sql layer structure with an octameric (H2O)8 water cluster. The 2D layers are further connected by O—H...O hydrogen bonds, resulting in a three-dimensional (3D) supramolecular structure. In 2, the CdII centres are coordinated by Seb2− ligands to form binuclear Cd2 units which are linked by bbimb and Seb2− ligands into a 2D hxl layer. The 2D layers are further connected by O—H...O hydrogen bonds, leading to an 8-connected 3D hex supramolecular network. IR and UV–Vis spectroscopy, thermogravimetric analysis and solid-state photoluminescence analysis were carried out on both MOFs. Luminescence sensing experiments reveal that both MOFs have good selective sensing towards Fe3+ in aqueous solution.


2001 ◽  
Vol 34 (5) ◽  
pp. 677-678 ◽  
Author(s):  
Anna Puig-Molina ◽  
Bernard Gorges ◽  
Heinz Graafsma

A furnace covering the temperature range from 25 to 1000°C has been designed and constructed to studyin situsolid-state reactions and melting and crystallization processes, with X-ray diffraction in transmission geometry using a two-dimensional-detector system. The oven can work in low vacuum and under a controlled atmosphere.


2015 ◽  
Vol 70 (8) ◽  
pp. 605-608
Author(s):  
Zhi-Guo Kong ◽  
Sheng-Nan Guo ◽  
Jia-Qi Miao ◽  
Miao An

AbstractA new Cd(II) coordination polymer, [Cd(CNA)]n (1) (H2CNA = 3-(carboxymethoxy)-2-naphthoic acid), was hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. The crystals are monoclinic, space group P21/c with a = 16.9698(18), b = 7.8314(8), c = 8.9553(10) Å, β = 100.657(2)°, V = 1169.6(2) Å3, Z = 4, Dcalcd. = 2.03 g cm−3, μ(MoKα) = 1.9 mm−1, F(000) = 696 e, R = 0.0305, wR = 0.0784 for 172 refined parameters and 2285 data. Each CNA anion bridges three Cd(II) cations to give rise to a two-dimensional network structure. Topologically, if each CNA anion is regarded as a linker, and each Cd(II) atom considered as a 4-conencted node, the structure is simplified as a 4-connected (4,4) network. The solid state photoluminescent properties of the compound were also studied at room temperature.


2018 ◽  
Vol 74 (12) ◽  
pp. 1576-1580 ◽  
Author(s):  
Ning-Ning Chen ◽  
Jian-Ning Ni ◽  
Jun Wang

A novel two-dimensional CdII coordination framework, poly[[[μ-1,3-bis(2-methyl-1H-imidazol-1-yl)benzene-κ2 N:N′](μ-1,3-phenylenediacetato-κ4 O,O′:O′′,O′′′)cadmium(II)] dihydrate], {[Cd(C10H8O4)(C14H14N4)]·2H2O} n or {[Cd(PDA)(1,3-BMIB)]·2H2O} n [1,3-BMIB is 1,3-bis(2-methyl-1H-imidazol-1-yl)benzene and H2PDA is 1,3-phenylenediacetic acid], has been prepared and characterized using IR, elemental analysis, thermal analysis and single-crystal X-ray diffraction, the latter revealing that the compound is a (4,4) grid coordination polymer with layers oriented parallel to the bc crystal planes. In the crystal, adjacent layers are further connected by O—H...O and C—H...O hydrogen bonds, forming a three-dimensional structure in the solid state. In addition, the compound exhibits strong fluorescence emissions and shows photocatalytic activity for the degradation of methylene blue in the solid state at room temperature.


2019 ◽  
Vol 75 (2) ◽  
pp. 196-199 ◽  
Author(s):  
Ning-Ning Chen ◽  
Jian-Ning Ni ◽  
Jun Wang ◽  
Jian-Qing Tao

A novel two-dimensional (2D) ZnII coordination framework, poly[[μ-1,3-bis(2-methyl-1H-imidazol-1-yl)benzene](μ-5-nitrobenzene-1,3-dicarboxylato)zinc(II)], [Zn(C8H3NO6)(C14H14N4)] n or [Zn(NO2-BDC)(1,3-BMIB)] n [1,3-BMIB is 1,3-bis(2-methyl-1H-imidazol-1-yl)benzene and NO2-H2BDC is 5-nitrobenzene-1,3-dicarboxylic acid], has been prepared and characterized by IR, elemental analysis, thermal analysis and single-crystal X-ray diffraction. Single-crystal X-ray diffraction analysis revealed that the compound is a new 2D polymer with a 63 topology parallel to the (10\overline{2}) crystal planes based on left-handed helices, right-handed helical NO2-BDC–Zn chains and [Zn2(1,3-BMIB)2] n clusters. In the crystal, adjacent layers are further connected by C—H...O hydrogen bonds, C—H...π interactions, C—O...π interactions and N—O...π interactions to form a three-dimensional structure in the solid state. In addition, the compound exhibits strong fluorescence emissions in the solid state at room temperature.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5013
Author(s):  
Valentine G. Nenajdenko ◽  
Namiq G. Shikhaliyev ◽  
Abel M. Maharramov ◽  
Khanim N. Bagirova ◽  
Gulnar T. Suleymanova ◽  
...  

Novel halogenated aromatic dichlorodiazadienes were prepared via copper-mediated oxidative coupling between the corresponding hydrazones and CCl4. These rare azo-dyes were characterized using 1H and 13C NMR techniques and X-ray diffraction analysis for five halogenated dichlorodiazadienes. Multiple non-covalent halogen···halogen interactions were detected in the solid state and studied by DFT calculations and topological analysis of the electron density distribution within the framework of Bader’s theory (QTAIM method). Theoretical studies demonstrated that non-covalent halogen···halogen interactions play crucial role in self-assembly of highly polarizable dichlorodiazadienes. Thus, halogen bonding can dictate a packing preference in the solid state for this class of dichloro-substituted heterodienes, which could be a convenient tool for a fine tuning of the properties of this novel class of dyes.


2014 ◽  
Vol 70 (3) ◽  
pp. 277-280 ◽  
Author(s):  
Cai-Xia Yu ◽  
Feng Zhao ◽  
Min Zhou ◽  
Dan-Feng Zhi ◽  
Lei-Lei Liu

In the title coordination polymer, [Zn2(C14H8N2O4)2(C12H10N2)]n, the asymmetric unit contains one ZnIIcation, two halves of 2,2′-(diazene-1,2-diyl)dibenzoate anions (denotedL2−) and half of a 1,2-bis(pyridin-4-yl)ethene ligand (denoted bpe). The three ligands lie across crystallographic inversion centres. Each ZnIIcentre is four-coordinated by three O atoms of bridging carboxylate groups from threeL2−ligands and by one N atom from a bpe ligand, forming a tetrahedral coordination geometry. Two ZnIIatoms are bridged by two carboxylate groups ofL2−ligands, generating a [Zn2(CO2)2] ring. Each loop serves as a fourfold node, which links its four equivalent nodesviathe sharing of fourL2−ligands to form a two-dimensional [Zn2L4]nnet. These nets are separated by bpe ligands acting as spacers, producing a three-dimensional framework with a 4664topology. Powder X-ray diffraction and solid-state photoluminescence were also measured.


Sign in / Sign up

Export Citation Format

Share Document