scholarly journals Understanding the Impact of Key Wine Components on the Use of a Non-Swelling Ion-Exchange Resin for Wine Protein Fining Treatment

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3905
Author(s):  
Lin Sun ◽  
Ananya Srinivas ◽  
Ron C. Runnebaum

The impact of key classes of compounds found in wine on protein removal by the ion-exchange resin, Macro-Prep® High S, was examined by adsorption isotherm experiments. A model wine system, which contained a prototypical protein Bovine Serum Albumin (BSA), was used. We systematically changed concentrations of individual chemical components to generate and compare adsorption isotherm plots and to quantify adsorption affinity or capacity parameters of Macro-Prep® High S ion-exchange resin. The pH (hydronium ion concentration), ethanol concentration, and prototypical phenolics and polysaccharide compounds are known to impact interactions with proteins and thus could alter the adsorption affinity and capacity of Macro-Prep® High S ion-exchange resin. At low equilibrium protein concentrations (< ~0.3 (g BSA)/L) and at high equilibrium protein concentrations in model wines at various pH, the adsorption behavior followed the Langmuir isotherm, most likely due to the resin acting as a monolayer adsorbent. The resulting range of BSA capacity was between 0.15–0.18 (g BSA)/(g Macro-Prep® High S resin). With the addition of ethanol, catechin, caffeic acid, and polysaccharides, the protein adsorption behavior was observed to differ at higher equilibrium protein concentrations (> ~0.3 (g BSA)/L), likely as a result of Macro-Prep® acting as an unrestricted multilayer adsorbent at these conditions. These data can be used to inform the design and scale-up of ion-exchange columns for removing proteins from wines.

2016 ◽  
Vol 13 (3) ◽  
pp. 478 ◽  
Author(s):  
Sébastien Leguay ◽  
Peter G. C. Campbell ◽  
Claude Fortin

Environmental context The lanthanides are a group of heavy elements (from lanthanum to lutetium) increasingly used in many electronic consumer products and little is known about their environmental mobility and toxicity. In natural systems, these elements will bind to natural organic matter but metal toxicity is usually defined by the free metal ion concentration. Here, we propose a method based on sample equilibration with an ion-exchange resin to measure the free lanthanide ion concentration in the presence of natural organic matter. Abstract An ion-exchange technique that employs a polystyrene sulphonate ion-exchange resin was developed for determining environmentally relevant free-ion concentrations of Ce, Eu, La and Nd. Owing to the high affinity of rare earth elements (REE) for the selected resin, this method requires the addition of an inert salt to increase the concentration of the counter-ions (i.e. cations that are exchanged with REE bound to the resin). The use of a batch equilibration approach to calibrate the resin allowed the implementation of the ion-exchange technique at reasonably low ionic strength (I = 0.1M). Several ligands were used to test the selectivity of the method, which proved to be highly selective for the free metal ion in presence of the tested cationic and anionic complexes (REE–nitrate, REE–malic acid and REE–nitrilotriacetic acid systems) and operational for very low proportions of REE3+, owing to the strong REE–resin interactions. The ion-exchange technique was also implemented to determine [Eu]inorg in the presence of natural humic matter (Suwannee River Humic Acid) and the results were compared with those obtained using equilibrium dialysis and those calculated with chemical equilibrium models. At pH 4.00, the measured [Eu]inorg values were in fairly good agreement with those predicted with the Windermere Humic Aqueous Model and Stockholm Humic Model, whereas the Non-Ideal Competitive Absorption model appeared to underestimate the [Eu]inorg. However, the inorganic europium concentrations were strongly underestimated (4 < [Eu]inorg, IET/[Eu]inorg, calc < 18) with the three prediction models at higher pH (5.3 and 6.2).


2014 ◽  
Vol 21 (12) ◽  
pp. 4445-4449 ◽  
Author(s):  
Ming-yu Wang ◽  
Chang-jun Jiang ◽  
Xue-wen Wang

2009 ◽  
Vol 168 (3) ◽  
pp. 979-983 ◽  
Author(s):  
Hiroshi Matsumura ◽  
Norikazu Kinoshita ◽  
Akihiro Toyoda ◽  
Kazuyoshi Masumoto ◽  
Kotaro Bessho ◽  
...  

2011 ◽  
Vol 28 (5) ◽  
pp. 1272-1279 ◽  
Author(s):  
Wei Luo ◽  
Hao Chen ◽  
Limei Fan ◽  
Jin Huang ◽  
Lei Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document