Tungsten removal from molybdate solutions using chelating ion-exchange resin: Equilibrium adsorption isotherm and kinetics

2016 ◽  
Vol 23 (5) ◽  
pp. 1052-1057 ◽  
Author(s):  
Xian-zheng Zhu ◽  
Guang-sheng Huo ◽  
Jie Ni ◽  
Qiong Song
Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3905
Author(s):  
Lin Sun ◽  
Ananya Srinivas ◽  
Ron C. Runnebaum

The impact of key classes of compounds found in wine on protein removal by the ion-exchange resin, Macro-Prep® High S, was examined by adsorption isotherm experiments. A model wine system, which contained a prototypical protein Bovine Serum Albumin (BSA), was used. We systematically changed concentrations of individual chemical components to generate and compare adsorption isotherm plots and to quantify adsorption affinity or capacity parameters of Macro-Prep® High S ion-exchange resin. The pH (hydronium ion concentration), ethanol concentration, and prototypical phenolics and polysaccharide compounds are known to impact interactions with proteins and thus could alter the adsorption affinity and capacity of Macro-Prep® High S ion-exchange resin. At low equilibrium protein concentrations (< ~0.3 (g BSA)/L) and at high equilibrium protein concentrations in model wines at various pH, the adsorption behavior followed the Langmuir isotherm, most likely due to the resin acting as a monolayer adsorbent. The resulting range of BSA capacity was between 0.15–0.18 (g BSA)/(g Macro-Prep® High S resin). With the addition of ethanol, catechin, caffeic acid, and polysaccharides, the protein adsorption behavior was observed to differ at higher equilibrium protein concentrations (> ~0.3 (g BSA)/L), likely as a result of Macro-Prep® acting as an unrestricted multilayer adsorbent at these conditions. These data can be used to inform the design and scale-up of ion-exchange columns for removing proteins from wines.


2011 ◽  
Vol 185 (2-3) ◽  
pp. 677-681 ◽  
Author(s):  
Qinhai Hu ◽  
Yuanyuan Meng ◽  
Tongxi Sun ◽  
Qaisar Mahmood ◽  
Donglei Wu ◽  
...  

2016 ◽  
Vol 52 ◽  
pp. 171-176
Author(s):  
M. Palkina ◽  
O. Metlitska

The aim of the research – adaptation, optimization and using of existing DNA extraction methods from bees’ biological material with the reagent «Chelex-100" under complex economic conditions of native laboratories, which will optimize labour costs and improve the economic performance of DNA extraction protocol. Materials and methods. In order to conduct the research the samples of honey bees’ biological material: queen pupae exuviae, larvae of drone brood, some adult bees’ bodies (head and thorax) were selected. Bowl and drone brood were obtained from the experimental bee hives of Institute of Apiculture nd. a. P. I. Prokopovich of NAAS. DNA extraction from biosamples of Apis mellifera ssp. was carried out using «Chelex-100®» ion exchange resin in different concentrations and combinations. Before setting tests for determination of quantitative and quality indexes, dilution of DNA samples of the probed object was conducted in ratio 1:40. The degree of contamination with protein and polysaccharide fractions (OD 260/230), quantitative content of DNA (OD 260/280) in the extracted tests were conducted using spectrophotometer of «Biospec – nano» at the terms of sample volume in 2 µl and length of optical way in 0,7 mm [7]. Verification of DNA samples from biological material of bees, isolated by «Chelex-100®», was conducted after cold keeping during 24 hours at 20°C using PСR with primaries to the fragment of gene of quantitative trait locus (QTL) Sting-2 of next structure [8]:  3' – CTC GAC GAG ACG ACC AAC TTG – 5’; 3' – AAC CAG AGT ATC GCG AGT GTT AC – 5’ Program of amplification: 94 °C – 5 minutes – 1 cycle; 94 °C – 1 minute, 57°C – 1 minute, 72 °C – 2 minutes – 30 cycles; elongation after 72°C during 2 minutes – 1 cycle. The division of obtained amplicons was conducted by gel electrophoresis at a low current – 7 µÀ, in 1,5 % agarose gel (Sigma ®) in TAE buffer [7]. The results. At the time of optimization of DNA isolation methods, according to existing methods of foreign experts, it was found optimal volume of ion exchange resin solution was in the proposed concentration: instead of 60 µl of solution used 120 µl of «Chelex-100®», time of incubation was also amended from 30 minutes to 180 minutes [9]. The use of the author's combination of method «Chelex-100®» with lysis enzymes, proteinase K and detergents (1M dithiothreitol), as time of incubation was also amended, which was reduced to 180 minutes instead of the proposed 12 hours [10]. Changes in quality characteristics of obtained DNA in samples after reduction in incubation time were not found. Conclusions. The most economical method of DNA isolation from bees’ biological material is 20% solution of «Chelex-100» ion exchange resin with the duration of the incubation period of 180 minutes. It should also be noted that the best results can be obtained from exuviae, selected immediately after the queen’s exit from bowl, that reduces the likelihood of DNA molecules destruction under the influence of nucleases activation, but not later than 12 hours from release using the technology of isolated obtain of queens.


1977 ◽  
Vol 49 (6) ◽  
pp. 764-766 ◽  
Author(s):  
Toshihiko. Hanai ◽  
Harold F. Walton

Sign in / Sign up

Export Citation Format

Share Document