scholarly journals Inhibitory Effect of Fisetin on α-Glucosidase Activity: Kinetic and Molecular Docking Studies

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5306
Author(s):  
Beiyun Shen ◽  
Xinchen Shangguan ◽  
Zhongping Yin ◽  
Shaofu Wu ◽  
Qingfeng Zhang ◽  
...  

The inhibition of α-glucosidase is a clinical strategy for the treatment of type 2 diabetes mellitus (T2DM), and many natural plant ingredients have been reported to be effective in alleviating hyperglycemia by inhibiting α-glucosidase. In this study, the α-glucosidase inhibitory activity of fisetin extracted from Cotinus coggygria Scop. was evaluated in vitro. The results showed that fisetin exhibited strong inhibitory activity with an IC50 value of 4.099 × 10−4 mM. Enzyme kinetic analysis revealed that fisetin is a non-competitive inhibitor of α-glucosidase, with an inhibition constant value of 0.01065 ± 0.003255 mM. Moreover, fluorescence spectrometric measurements indicated the presence of only one binding site between fisetin and α-glucosidase, with a binding constant (lgKa) of 5.896 L·mol−1. Further molecular docking studies were performed to evaluate the interaction of fisetin with several residues close to the inactive site of α-glucosidase. These studies showed that the structure of the complex was maintained by Pi-Sigma and Pi-Pi stacked interactions. These findings illustrate that fisetin extracted from Cotinus coggygria Scop. is a promising therapeutic agent for the treatment of T2DM.

Marine Drugs ◽  
2019 ◽  
Vol 17 (12) ◽  
pp. 666 ◽  
Author(s):  
Najeeb Ur Rehman ◽  
Kashif Rafiq ◽  
Ajmal Khan ◽  
Sobia Ahsan Halim ◽  
Liaqat Ali ◽  
...  

Bioassay guided isolation of the methanolic extract of marine macro brown alga Dictyopteris hoytii afforded one new metabolite (ethyl methyl 2-bromobenzene 1,4-dioate, 1), one new natural metabolite (diethyl-2-bromobenzene 1,4-dioate, 2) along with six known metabolites (3–8) reported for the first time from this source. The structure elucidation of all these compounds was achieved by extensive spectroscopic techniques including 1D (1H and 13C) and 2D (NOESY, COSY, HMBC and HSQC) NMR and mass spectrometry and comparison of the spectral data of known compounds with those reported in literature. The in vitro α-glucosidase inhibition studies confirmed compound 7 to be the most active against α-glucosidase enzyme with IC50 value of 30.5 ± 0.41 μM. Compounds 2 and 3 demonstrated good inhibition with IC50 values of 234.2 ± 4.18 and 289.4 ± 4.91 μM, respectively, while compounds 1, 5, and 6 showed moderate to low inhibition. Furthermore, the molecular docking studies of the active compounds were performed to examine their mode of inhibition in the binding site of the α-glucosidase enzyme.


2020 ◽  
Vol 11 (2) ◽  
pp. 2117-2122
Author(s):  
Abhijit Mitra ◽  
Mohankumar Ramasamy ◽  
Valentina Parthiban ◽  
Thottempudi Ravi Teja ◽  
Srikalyani Vemuri ◽  
...  

Pisonia grandis R.Br belonging to the family Nyctaginaceae is a widely distributed evergreen tree in India known for its medicinal uses. The study was aimed to investigate the anti-diabetic property in the leaves of Pisonia grandis R.Br. The isolation and purification were performed by the conventional column chromatography and the resultant yield was found to be a white crystalline powder, which was further subjected for characterization through IR, 1H NMR, 13C NMR and Mass spectroscopy. From the characterization data, the isolated compound was identified as stigmasterol, it was first time isolated from the hexane extract of the leaves. The α-amylase inhibitory activity of stigmasterol from the hexane extract of the leaves of Pisonia grandis R.Br showed high potent activity with an IC50 value of 46μg/ml. The anti-diabetic activity of the compound against α-amylase and four other diabetic enzymes- α-glucosidase acid phosphatase, endo-β-N acetaglucosaminidase and β-glucuronidase were further investigated by molecular docking studies and proved that stigmasterol can be a potential anti-diabetic agent.


2019 ◽  
Vol 16 (7) ◽  
pp. 560-568
Author(s):  
Vijayan R. Akhila ◽  
Maheswari R. Priya ◽  
Daisy R. Sherin ◽  
Girija K. Krishnapriya ◽  
Sreerekha V. Keerthi ◽  
...  

The synthesis of 4-amino-2-arylamino-5-(benzofuran-2-oyl)thiazoles 4a-h, as example of 2,4-diaminothiazole-benzofuran hybrids and an evaluation of their antidiabetic activity, by in vitro and computational methods, are reported. The synthesis of these diaminothiazoles was achieved mechano chemically by a rapid solvent-less method. Their antidiabetic activity was assessed by α-glucosidase and α-amylase inhibition assays. The, IC50 value for α-glucosidase inhibition by 4-amino-5- (benzofuran-2-oyl)-2-(4-methoxyphenylamino)thiazole (4d) was found to be 20.04 µM and the IC50 value for α-amylase inhibition, 195.03 µM, whereas the corresponding values for reference acarbose were 53.38 µM and 502.03 µM, respectively. Molecular docking studies at the active sites of α- glucosidase and α-amylase showed that among the diaminothiazoles 4a-h now studied, 4-amino-5- (benzofuran-2-oyl)-2-(4-methoxyphenylamino)thiazole (4d) has the highest D-scores of -8.63 and -8.08 for α-glucosidase and for α-amylase, with binding energies -47.76 and -19.73 kcal/mol, respectively.


Author(s):  
Kushagra Dubey ◽  
Raghvendra Dubey ◽  
Revathi Gupta ◽  
Arun Gupta

Background: Diosmin is a flavonoid obtained from the citrus fruits of the plants. Diosmin has blood lipid lowering activities, antioxidant activity, enhances venous tone and microcirculation, protects capillaries, mainly by reducing systemic oxidative stress. Objective: The present study demonstrates the potential of Diosmin against the enzymes aldose reductase, α-glucosidase, and α-amylase involved in diabetes and its complications by in vitro evaluation and reverse molecular docking studies. Method: The assay of aldose reductase was performed by using NADPH as starting material and DL-Glyceraldehyde as a substrate. DNS method was used for alpha amylase inhibition and in alpha glucosidase inhibitory activity p-nitrophenyl glucopyranoside (pNPG) was used as substrate. The reverse molecular docking studies was performed by using Molegro software (MVD) with grid resolution of 30 Å. Result: Diosmin shows potent inhibitory effect against aldose reductase (IC50:333.88±0.04 µg/mL), α-glucosidase (IC50:410.3±0.01 µg/mL) and α-amylase (IC50: 404.22±0.02 µg/mL) respectively. The standard drugs shows moderate inhibitory activity for enzymes. The MolDock Score of Diosmin was -224.127 against aldose reductase, -168.17 against α-glucosidase and -176.013 against α-amylase respectively, which was much higher than standard drugs. Conclusion: From the result it was concluded that diosmin was a potentially inhibitor of aldose reductase, alpha amylase and alpha glucosidase enzymes then the standard drugs and it will be helpful in the management of diabetes and its complications. This will also be benevolent to decrease the socio economical burden on the middle class family of the society.


2019 ◽  
Vol 28 (6) ◽  
pp. 873-883 ◽  
Author(s):  
Momin Khan ◽  
Ghulam Ahad ◽  
Abdul Manaf ◽  
Reshma Naz ◽  
Syed Roohul Hussain ◽  
...  

Molecules ◽  
2017 ◽  
Vol 22 (9) ◽  
pp. 1555 ◽  
Author(s):  
Zipeng Gong ◽  
Yaping Peng ◽  
Jie Qiu ◽  
Anbai Cao ◽  
Guangcheng Wang ◽  
...  

2021 ◽  
Author(s):  
Po-Chun Chen ◽  
Bongani Sicelo Dlamini ◽  
Chiy-Rong Chen ◽  
Yueh-Hsiung Kuo ◽  
Wen-Ling Shih ◽  
...  

Abstract In the continuous search for α-glucosidase inhibitors, eleven phenolic compounds (1-11) were isolated from the root bark of Paeonia suffruticosa. Their α-glucosidase inhibitory activity and inhibition mechanism were investigated using an in vitro inhibition assay and molecular docking studies. Compounds 2, 5, 6, and 8-11 (IC50 between 290 and 431 µM) inhibited α-glucosidase more effectively than the reference compound acarbose (IC50=1463 ± 29.5 µM). Among them, compound 10 exhibited the highest α-glucosidase inhibitory effect with an IC50 value of 290.4 ± 9.6 µM. Compounds 2, 5, 9 10 and 11 were found to be competitive inhibitors, while compounds 6 and 8 were noncompetitive inhibitors of α-glucosidase. Computational analyses showed that the main binding forces between the compounds and the main residues were hydrogen bonds. The results indicated that these compounds had considerable α-glucosidase inhibitory activity.


2018 ◽  
Vol 80 ◽  
pp. 129-144 ◽  
Author(s):  
Bilquees Bano ◽  
Kanwal ◽  
Khalid Mohammed Khan ◽  
Arif Lodhi ◽  
Uzma Salar ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1511 ◽  
Author(s):  
Danish Shahzad ◽  
Aamer Saeed ◽  
Fayaz Ali Larik ◽  
Pervaiz Ali Channar ◽  
Qamar Abbas ◽  
...  

A series of symmetrical salicylaldehyde-bishydrazine azo molecules, 5a–5h, have been synthesized, characterized by 1H-NMR and 13C-NMR, and evaluated for their in vitro α-glucosidase and α-amylase inhibitory activities. All the synthesized compounds efficiently inhibited both enzymes. Compound 5g was the most potent derivative in the series, and powerfully inhibited both α-glucosidase and α-amylase. The IC50 of 5g against α-glucosidase was 0.35917 ± 0.0189 µM (standard acarbose IC50 = 6.109 ± 0.329 µM), and the IC50 value of 5g against α-amylase was 0.4379 ± 0.0423 µM (standard acarbose IC50 = 33.178 ± 2.392 µM). The Lineweaver-Burk plot indicated that compound 5g is a competitive inhibitor of α-glucosidase. The binding interactions of the most active analogues were confirmed through molecular docking studies. Docking studies showed that 5g interacts with the residues Trp690, Asp548, Arg425, and Glu426, which form hydrogen bonds to 5g with distances of 2.05, 2.20, 2.10 and 2.18 Å, respectively. All compounds showed high mutagenic and tumorigenic behaviors, and only 5e showed irritant properties. In addition, all the derivatives showed good antioxidant activities. The pharmacokinetic evaluation also revealed promising results


Sign in / Sign up

Export Citation Format

Share Document