scholarly journals Structure Related α-Glucosidase Inhibitory Activity and Molecular Docking Analyses of Phenolic Compounds From Paeonia Suffruticosa

Author(s):  
Po-Chun Chen ◽  
Bongani Sicelo Dlamini ◽  
Chiy-Rong Chen ◽  
Yueh-Hsiung Kuo ◽  
Wen-Ling Shih ◽  
...  

Abstract In the continuous search for α-glucosidase inhibitors, eleven phenolic compounds (1-11) were isolated from the root bark of Paeonia suffruticosa. Their α-glucosidase inhibitory activity and inhibition mechanism were investigated using an in vitro inhibition assay and molecular docking studies. Compounds 2, 5, 6, and 8-11 (IC50 between 290 and 431 µM) inhibited α-glucosidase more effectively than the reference compound acarbose (IC50=1463 ± 29.5 µM). Among them, compound 10 exhibited the highest α-glucosidase inhibitory effect with an IC50 value of 290.4 ± 9.6 µM. Compounds 2, 5, 9 10 and 11 were found to be competitive inhibitors, while compounds 6 and 8 were noncompetitive inhibitors of α-glucosidase. Computational analyses showed that the main binding forces between the compounds and the main residues were hydrogen bonds. The results indicated that these compounds had considerable α-glucosidase inhibitory activity.

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5306
Author(s):  
Beiyun Shen ◽  
Xinchen Shangguan ◽  
Zhongping Yin ◽  
Shaofu Wu ◽  
Qingfeng Zhang ◽  
...  

The inhibition of α-glucosidase is a clinical strategy for the treatment of type 2 diabetes mellitus (T2DM), and many natural plant ingredients have been reported to be effective in alleviating hyperglycemia by inhibiting α-glucosidase. In this study, the α-glucosidase inhibitory activity of fisetin extracted from Cotinus coggygria Scop. was evaluated in vitro. The results showed that fisetin exhibited strong inhibitory activity with an IC50 value of 4.099 × 10−4 mM. Enzyme kinetic analysis revealed that fisetin is a non-competitive inhibitor of α-glucosidase, with an inhibition constant value of 0.01065 ± 0.003255 mM. Moreover, fluorescence spectrometric measurements indicated the presence of only one binding site between fisetin and α-glucosidase, with a binding constant (lgKa) of 5.896 L·mol−1. Further molecular docking studies were performed to evaluate the interaction of fisetin with several residues close to the inactive site of α-glucosidase. These studies showed that the structure of the complex was maintained by Pi-Sigma and Pi-Pi stacked interactions. These findings illustrate that fisetin extracted from Cotinus coggygria Scop. is a promising therapeutic agent for the treatment of T2DM.


Author(s):  
Po-Chun Chen ◽  
Bongani Sicelo Dlamini ◽  
Chiy-Rong Chen ◽  
Yueh-Hsiung Kuo ◽  
Wen-Ling Shih ◽  
...  

2020 ◽  
Vol 17 (10) ◽  
pp. 1216-1226
Author(s):  
Mohammed Hussen Bule ◽  
Roghaieh Esfandyari ◽  
Tadesse Bekele Tafesse ◽  
Mohsen Amini ◽  
Mohammad Ali Faramarzi ◽  
...  

Background: α-Glucosidase inhibitors hinder the carbohydrate digestion and play an important role in the treatment of diabetes mellitus. α-glucosidase inhibitors available on the market are acarbose, miglitol, and voglibose. However, the use of acarbose is diminishing due to related side effects like diarrhea, bloating and abdominal distension. Objectives: This study aimed to synthesize 2,4,6-triaryl pyrimidines derivatives, screen their α- glucosidase inhibitory activity, perform kinetic and molecular docking studies. Methods: A series of 2,4,6-triaryl pyrimidine derivatives were synthesized and their α-glucosidase inhibitory activity was screened in vitro. Pyrimidine derivatives 4a-m were synthesized via a twostep reaction with a yield between 49 and 93%. The structure of the synthesized compounds was confirmed by different spectroscopic techniques (IR, NMR and MS). The in vitro α-glucosidase inhibition activities of the synthesized compounds 4a-m was also evaluated against Saccharomyces cerevisiae α-glucosidase. Results and Discussion: The majority of synthesized compounds had α-glucosidase inhibitory activity. Particularly compounds 4b and 4g were the most active compounds with an IC50 value of 125.2± 7.2 and 139.8 ± 8.1 μM respectively. The kinetic study performed for the most active compound 4b revealed that the compound was a competitive inhibitor of Saccharomyces cerevisiae α-glucosidase with Ki of 122 μM. The molecular docking study also revealed that the two compounds have important binding interactions with the enzyme active site. Conclusion: 2,4,6-triarylpyrimidine derivative 4a-m were synthesized and screened for α- glucosidase inhibitory activity. Most of the synthesized compounds possess α-glucosidase inhibitory activity, and compound 4b demonstrated the most significant inhibitory action as compared to acarbose.


2020 ◽  
Vol 16 (6) ◽  
pp. 826-840
Author(s):  
Saeed Ullah ◽  
Salma Mirza ◽  
Uzma Salar ◽  
Shafqat Hussain ◽  
Kulsoom Javaid ◽  
...  

Background: Results of our previous studies on antiglycation activity, and the noncytotoxicity of 2-mercapto benzothiazoles, encouraged us to further widen our investigation towards the identification of leads against diabetes mellitus. Methods: 33 derivatives of 2-mercapto benzothiazoles 1-33 were evaluated for in vitro α- glucosidase inhibitory activity. Mode of inhibition was deduced by kinetic studies. To predict the interactions of 2-mercapto benzothiazole derivatives 1-33 with the binding pocket of α-glucosidase enzyme, molecular docking studies were performed on the selected inhibitors. Results: Compounds 2-4, 6-7, 9-26, 28 and 30 showed many folds potent α-glucosidase inhibitory activity in the range of IC50 = 31.21-208.63 μM, as compared to the standard drug acarbose (IC50 = 875.75 ± 2.08 μM). It was important to note that except derivative 28, all other derivatives were also found previously to have antiglycating potential in the range of IC50 = 187.12-707.21 μM. Conclusion: A number of compounds were identified as dual nature as antiglycating agent and α- glucosidase inhibitors. These compounds may serve as potential lead candidates for the management of diabetes mellitus.


Author(s):  
Kushagra Dubey ◽  
Raghvendra Dubey ◽  
Revathi Gupta ◽  
Arun Gupta

Background: Diosmin is a flavonoid obtained from the citrus fruits of the plants. Diosmin has blood lipid lowering activities, antioxidant activity, enhances venous tone and microcirculation, protects capillaries, mainly by reducing systemic oxidative stress. Objective: The present study demonstrates the potential of Diosmin against the enzymes aldose reductase, α-glucosidase, and α-amylase involved in diabetes and its complications by in vitro evaluation and reverse molecular docking studies. Method: The assay of aldose reductase was performed by using NADPH as starting material and DL-Glyceraldehyde as a substrate. DNS method was used for alpha amylase inhibition and in alpha glucosidase inhibitory activity p-nitrophenyl glucopyranoside (pNPG) was used as substrate. The reverse molecular docking studies was performed by using Molegro software (MVD) with grid resolution of 30 Å. Result: Diosmin shows potent inhibitory effect against aldose reductase (IC50:333.88±0.04 µg/mL), α-glucosidase (IC50:410.3±0.01 µg/mL) and α-amylase (IC50: 404.22±0.02 µg/mL) respectively. The standard drugs shows moderate inhibitory activity for enzymes. The MolDock Score of Diosmin was -224.127 against aldose reductase, -168.17 against α-glucosidase and -176.013 against α-amylase respectively, which was much higher than standard drugs. Conclusion: From the result it was concluded that diosmin was a potentially inhibitor of aldose reductase, alpha amylase and alpha glucosidase enzymes then the standard drugs and it will be helpful in the management of diabetes and its complications. This will also be benevolent to decrease the socio economical burden on the middle class family of the society.


2020 ◽  
Vol 10 (3) ◽  
pp. 208-215 ◽  
Author(s):  
Talia Serseg ◽  
Khedidja Benarous ◽  
Mohamed Yousfi

Background: Essential oils have been used for centuries. EOs are gaining increasing interest because of their acceptance by consumers and their safe status. For the first time, the effect of essential oils on the inhibition of lipases has been investigated in this work. Objective: We aimed in this study to investigate in vitro the inhibitory effects of the three essential oils of most used spices: Peppermint (Mentha piperita L.), cinnamon (Cinnamomum zeylanicum L.) and Cloves (Syzygium aromaticum L. Merr. et Perry) against Candida rugose lipase. In silico studies using molecular docking have been achieved to study the inhibition mechanism of major compounds of EO: menthol, carvacrol, eugenol and cinnamylaldehyde toward CRL. Methods: The inhibitory effect of three essential oils were determined by candida rugosa enzyme and pNP-L as substrate using spectrophotometry. Autodock vina was used for molecular docking with 50 runs. Results: We have found that these essential oils have a strong inhibitory effect with IC50 values 1.09, 1.78 and 1.13 mg/ml compared with Orlistat 0.06 mg/ml. The results show competitive inhibition for the three major compounds Menthol, Carvacrol and Eugenol with uncompetitive inhibition for Cinnamaldehyde. Different repetition ratios of hydrogen bonds and hydrophobic interactions were observed. The saved interactions were with His449, Ser209, Gly123, Gly124 and Phe344 for all molecules. Conclusion: These observations support using and considering essential oils and their major compounds as good sources for design new drugs to treat candidiasis and other diseases related to Lipases.


2019 ◽  
Vol 28 (6) ◽  
pp. 873-883 ◽  
Author(s):  
Momin Khan ◽  
Ghulam Ahad ◽  
Abdul Manaf ◽  
Reshma Naz ◽  
Syed Roohul Hussain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document