scholarly journals Protein-Protein Interactions: Insight from Molecular Dynamics Simulations and Nanoparticle Tracking Analysis

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5696
Author(s):  
Wei Lim Chong ◽  
Koollawat Chupradit ◽  
Sek Peng Chin ◽  
Mai Mai Khoo ◽  
Sook Mei Khor ◽  
...  

Protein-protein interaction plays an essential role in almost all cellular processes and biological functions. Coupling molecular dynamics (MD) simulations and nanoparticle tracking analysis (NTA) assay offered a simple, rapid, and direct approach in monitoring the protein-protein binding process and predicting the binding affinity. Our case study of designed ankyrin repeats proteins (DARPins)—AnkGAG1D4 and the single point mutated AnkGAG1D4-Y56A for HIV-1 capsid protein (CA) were investigated. As reported, AnkGAG1D4 bound with CA for inhibitory activity; however, it lost its inhibitory strength when tyrosine at residue 56 AnkGAG1D4, the most key residue was replaced by alanine (AnkGAG1D4-Y56A). Through NTA, the binding of DARPins and CA was measured by monitoring the increment of the hydrodynamic radius of the AnkGAG1D4-gold conjugated nanoparticles (AnkGAG1D4-GNP) and AnkGAG1D4-Y56A-GNP upon interaction with CA in buffer solution. The size of the AnkGAG1D4-GNP increased when it interacted with CA but not AnkGAG1D4-Y56A-GNP. In addition, a much higher binding free energy (∆GB) of AnkGAG1D4-Y56A (−31 kcal/mol) obtained from MD further suggested affinity for CA completely reduced compared to AnkGAG1D4 (−60 kcal/mol). The possible mechanism of the protein-protein binding was explored in detail by decomposing the binding free energy for crucial residues identification and hydrogen bond analysis.

Author(s):  
Daniel Alvarez- Garcia ◽  
Peter Schmidtke ◽  
Elena Cubero ◽  
Xavier Barril

Background: Mixed solvents MD simulations have proved to be a useful and increasingly accepted technique with several applications in structure-based drug discovery Method: Mixed solvents MD simulations have proved to be a useful and increasingly accepted technique with several applications in structure-based drug discovery Result: As such, they are hardly transferable to different molecules. Conclusion: To achieve transferable energies, we present here a method for decomposing the molecular binding free energy into accurate atomic contributions and we demonstrate with two qualitative visual examples how the corrected energy maps better match known binding hotspots and how they can reveal hidden hotspots with actual drug design potential.


2011 ◽  
Vol 17 (11) ◽  
pp. 2805-2816 ◽  
Author(s):  
Mathew Varghese Koonammackal ◽  
Unnikrishnan Viswambharan Nair Nellipparambil ◽  
Chellappanpillai Sudarsanakumar

2020 ◽  
Vol 10 (6) ◽  
pp. 20190141
Author(s):  
Philip W. Fowler

The emergence of antimicrobial resistance threatens modern medicine and necessitates more personalized treatment of bacterial infections. Sequencing the whole genome of the pathogen(s) in a clinical sample offers one way to improve clinical microbiology diagnostic services, and has already been adopted for tuberculosis in some countries. A key weakness of a genetics clinical microbiology is it cannot return a result for rare or novel genetic variants and therefore predictive methods are required. Non-synonymous mutations in the S. aureus dfrB gene can be successfully classified as either conferring resistance (or not) by calculating their effect on the binding free energy of the antibiotic, trimethoprim. The underlying approach, alchemical free energy methods, requires large numbers of molecular dynamics simulations to be run. We show that a large number ( N = 15) of binding free energies calculated from a series of very short (50 ps) molecular dynamics simulations are able to satisfactorily classify all seven mutations in our clinically derived testset. A result for a single mutation could therefore be returned in less than an hour, thereby demonstrating that this or similar methods are now sufficiently fast and reproducible for clinical use.


2014 ◽  
Vol 86 (2) ◽  
pp. 215-222 ◽  
Author(s):  
Wataru Shinoda ◽  
Michael L. Klein

Abstract A series of molecular dynamics (MD) simulations has been undertaken to investigate the effective interaction between vesicles including PC (phosphatidylcholine) and PE (phosphatidylethanolamine) lipids using the Shinoda–DeVane–Klein coarse-grained force field. No signatures of fusion were detected during MD simulations employing two apposed unilamellar vesicles, each composed of 1512 lipid molecules. Association free energy of the two stable vesicles depends on the lipid composition. The two PC vesicles exhibit a purely repulsive interaction with each other, whereas two PE vesicles show a free energy gain at the contact. A mixed PC/PE (1:1) vesicle shows a higher flexibility having a lower energy barrier on the deformation, which is caused by lipid sorting within each leaflet of the membranes. With a preformed channel or stalk between proximal membranes, PE molecules contribute to stabilize the stalk. The results suggest that the lipid components forming the membrane with a negative spontaneous curvature contribute to stabilize the stalk between two vesicles in contact.


Sign in / Sign up

Export Citation Format

Share Document