scholarly journals Thermodynamic Assessment of a Solar-Driven Integrated Membrane Reactor for Ethanol Steam Reforming

Molecules ◽  
2021 ◽  
Vol 26 (22) ◽  
pp. 6921
Author(s):  
Hongsheng Wang ◽  
Bingzheng Wang ◽  
Sean-Thomas B. Lundin ◽  
Hui Kong ◽  
Bosheng Su ◽  
...  

To efficiently convert and utilize intermittent solar energy, a novel solar-driven ethanol steam reforming (ESR) system integrated with a membrane reactor is proposed. It has the potential to convert low-grade solar thermal energy into high energy level chemical energy. Driven by chemical potential, hydrogen permeation membranes (HPM) can separate the generated hydrogen and shift the ESR equilibrium forward to increase conversion and thermodynamic efficiency. The thermodynamic and environmental performances are analyzed via numerical simulation under a reaction temperature range of 100–400 °C with permeate pressures of 0.01–0.75 bar. The highest theoretical conversion rate is 98.3% at 100 °C and 0.01 bar, while the highest first-law efficiency, solar-to-fuel efficiency, and exergy efficiency are 82.3%, 45.3%, and 70.4% at 215 °C and 0.20 bar. The standard coal saving rate (SCSR) and carbon dioxide reduction rate (CDRR) are maximums of 101 g·m−2·h−1 and 247 g·m−2·h−1 at 200 °C and 0.20 bar with a hydrogen generation rate of 22.4 mol·m−2·h−1. This study illustrates the feasibility of solar-driven ESR integrated with a membrane reactor and distinguishes a novel approach for distributed hydrogen generation and solar energy utilization and upgradation.

2016 ◽  
Vol 11 (1) ◽  
pp. 51-55 ◽  
Author(s):  
K. Ghasemzadeh ◽  
R. Zeynali ◽  
F. Ahmadnejad ◽  
A. A. Babalou ◽  
A. Basile

Abstract The main purpose of present study is the analysis of dense palladium membrane reactor (MR) performance during ethanol steam reforming (ESR) reaction using computational fluid dynamic (CFD). To this aim, a two-dimensional and isothermal model based on CFD method was developed and results validation was tested by our experimental data achieved in ITM-CNR of Italy. In this work, Pd-based MR modeling was performed by using COMSOL-MULTIPHYSICS software. Regarding to model validation results, a good agreement was found between CFD model results and experimental data. Moreover, in this study, the effects of the some important operating parameters (reaction temperature and pressure) on the performance of Pd-based MR was studied in terms of ethanol conversion and hydrogen recovery. Concerning to simulation results, the CFD model presented velocity and pressure profiles in both side of MR and also compositions of various species in permeate and retentate streams. The simulation results indicated that the Pd-based MR has better performance with respect to traditional reactor (TR) in terms of the ethanol conversion, especially, at lower reaction temperatures and higher reactions pressures. As a consequence, CFD model results illustrated that Pd-based MR performance was improved by increasing the reaction pressure, while this parameter had negative effect on the TR performance. This result related to enhancement of hydrogen permeance through the palladium membrane by increasing the pressure gradient. Indeed, this shift effect can provide a higher ethanol conversion in lower temperatures in the Pd-based MR. In particular, 98% ethanol conversion and 37% hydrogen recovery was achieved at 350°C and 2 atm.


2009 ◽  
Vol 34 (11) ◽  
pp. 4747-4754 ◽  
Author(s):  
Silvano Tosti ◽  
Angelo Basile ◽  
Rodolfo Borelli ◽  
Fabio Borgognoni ◽  
Stefano Castelli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document