scholarly journals Controllable In-Situ Growth of Silver Nanoparticles on Filter Paper for Flexible and Highly Sensitive SERS Sensors for Malachite Green Residue Detection

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 826 ◽  
Author(s):  
Lingzi Zhang ◽  
Jun Liu ◽  
Guowei Zhou ◽  
Zhiliang Zhang

In this work, a series of highly flexible and sensitive surface-enhanced Raman scattering (SERS) substrates were fabricated by the in-situ growth of silver nanoparticles (AgNPs) on polydopamine (PDA) templated filter papers (FPs), based on mussel-inspired surface chemistry. The obtained FP@PDA@AgNPs strips exhibited high sensitivity and reproducibility with Rhodamine 6G (R6G) probe molecules, with a calculated detection limit of approximately 10−10 M. More critically, these FP@PDA@AgNPs strips could be used as outstanding flexible SERS sensors to quickly collect and detect malachite green (MG) residues on fish scales, crab shells and shrimp skins by a swabbing extraction method. The detection limits for MG residues were calculated to be approximately as low as 0.04635 pg/cm2, 0.06952 pg/cm2 and 0.09270 pg/cm2, respectively. This facile and efficient strategy could to be utilized as a universal approach to fabricating a variety of flexible, cheap and portable SERS sensors for surface contamination analysis, and has great potential in the environmental scientific analysis and food safety monitoring fields.

Nanoscale ◽  
2014 ◽  
Vol 6 (13) ◽  
pp. 7232-7236 ◽  
Author(s):  
Yi-Chung Wang ◽  
Joseph S. DuChene ◽  
Fengwei Huo ◽  
Wei David Wei

The widespread implementation of surface enhanced Raman scattering (SERS) techniques for chemical and biological detection requires an inexpensive, yet robust SERS substrate with high sensitivity and reproducibility.


2010 ◽  
Vol 2 (11) ◽  
pp. 3333-3339 ◽  
Author(s):  
Sehoon Chang ◽  
Zachary A. Combs ◽  
Maneesh K. Gupta ◽  
Richard Davis ◽  
Vladimir V. Tsukruk

Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 384 ◽  
Author(s):  
Zhiliang Zhang ◽  
Tiantian Si ◽  
Jun Liu ◽  
Guowei Zhou

The rapid sampling and efficient collection of target molecules from a real-world surface is fairly crucial for surface-enhanced Raman scattering (SERS) to detect trace pesticide residues in the environment and in agriculture fields. In this work, a versatile approach was exploited to fabricate a flexible SERS substrate for highly sensitive detection of carbaryl pesticides, using in-situ grown silver nanoparticles (AgNPs)on non-woven (NW) fabric surfaces based on mussel-inspired polydopamine (PDA) molecules. The obtained NW@PDA@AgNPs fabrics showed extremely sensitive and reproducible SERS signals toward crystal violet (CV) molecules, and the detection limit was as low as 1.0 × 10−12 M. More importantly, these NW@PDA@AgNPs fabrics could be directly utilized as flexible SERS substrates for the rapid extraction and detection of trace carbaryl pesticides from various fruit surfaces through a simple swabbing approach. It was identified that the detection limits of carbaryl residues from apple, orange, and banana surfaces were approximately decreased to 4.02 × 10−12, 6.04 × 10−12, and 5.03 × 10−12 g, respectively, demonstrating high sensitivity and superior reliability. These flexible substrates could not only drastically increase the collection efficiency from multifarious irregular-shaped matrices, but also greatly enhance analytical sensitivity and reliability for carbaryl pesticides. The fabricated flexible and multifunctional SERS substrates would have great potential to trace pesticide residue detection in the environment and bioscience fields.


2019 ◽  
Vol 9 (23) ◽  
pp. 5237
Author(s):  
Chu-Yu Huang ◽  
Chih-Hung Chien

We propose a facile method to produce micro/nano hierarchical surface-enhanced Raman scattering (SERS) active substrates using simple steps and inexpensive costs. The proposed SERS substrate is a silicon pyramid array covered by a nanostructured gold film (AuNS @ SiPA). Through finite element method (FEM) simulation, we showed that many strong local electric field enhancements (hot spots) were formed between the nano-gap of gold nanostructures. In addition, the micron-scale pyramid structure not only increases the sensing surface area of the sensor, but also helps trap light. By combining these micro and nano structures, the proposed micro/nano hierarchical SERS sensor exhibited high sensitivity. Experimental results confirmed that the AuNS @ SiPA substrate has high sensitivity. The SERS signal enhancement factor obtained from the Rhodamine 6G (R6G) probe molecules was as high as 1 × 107 and the SERS substrates were found to be able to detect a very low concentration of 0.01 nM malachite green (MG) solution. Therefore, this study provides a novel and practical method for fabricating SERS substrates that can facilitate the use of SERS in medicine, food safety, and biotechnology.


The Analyst ◽  
2017 ◽  
Vol 142 (24) ◽  
pp. 4756-4764 ◽  
Author(s):  
Yi Li ◽  
Rui Lu ◽  
Jinyou Shen ◽  
Weiqing Han ◽  
Xiuyun Sun ◽  
...  

A flexible 3D hybrid PC/Ag surface-enhanced Raman scattering (SERS) substrate was fabricated through the combination of electrospinning and in situ chemical reduction.


2016 ◽  
Vol 71 (5) ◽  
pp. 879-887 ◽  
Author(s):  
Murugesan Balamurugan ◽  
Jyisy Yang

In this work, a simple method via decoration of silver nanoparticles (AgNPs) on electrospun polycarbonate nanofibers (PCNFs) was proposed to prepare highly sensitive three-dimensional (3D) substrates for surface-enhanced Raman scattering (SERS) measurements. The method proposed in this work gave a high sensitive Ag@PCNFs substrate, which resulted from a successful production of high surface area of PCNFs with a high efficiency in the decoration of AgNPs. To produce PCNFs suitable for SERS application, parameters in fabrication of PCNFs were systematically examined and correlated with their corresponding scanning electron microscope (SEM) images. Examined parameters included the concentration of PC solution, the solvent to form PC solution, the applied voltage, and the rotating speed of a drum collector. Using the optimized condition, the bead-free PCNFs with a diameter in the range of 200–400 nm were successfully produced. To increase the efficiency in decoration of AgNPs, the surface properties of PNCFs were altered with an organic solvent, which was selected experimentally with guidance of Hildebrand solubility parameter. Results indicated that methanol was the most suitable solvent to effectively decorate AgNPs on PCNFs. By probing with para-hydroxythiophenol (pHTP), prepared SERS substrates of Ag@PCNFs provided an enhancement factor to the order of 7, which is at least an order of magnitude larger than the reported values in the literature for SERS substrates prepared with the electrospinning technique.


2020 ◽  
Vol 30 (4) ◽  
pp. 345
Author(s):  
Bich Ngoc Nguyen Thi ◽  
Viet Ha Chu ◽  
Thi Thuy Nguyen ◽  
Trong Nghia Nguyen ◽  
Hong Nhung Tran

A flexible low-cost paper-based surface enhanced Raman scattering (SERS) substrate was successfully manufactured by a direct chemical reduction of silver nanoparticles (AgNPs) onto a common commercially available filter paper. Characterization of fabricated paper-based SERS substrate and the influences of the silver nitrate concentration, type of paper on SERS signal were systematically investigated. In order to fabricate SERS substrates with the highest quality, a suitable one from four different types of filter papers was chosen. The prepared SERS substrates have capability for detecting food toxic chemicals. The test of detecting melamine in aqueous solution was successfully demonstrated with the limit of detection for melamine is 10-7M.


Sign in / Sign up

Export Citation Format

Share Document