scholarly journals Optimization and Characterization of Paper-based SERS Substrates for Detection of Melamine

2020 ◽  
Vol 30 (4) ◽  
pp. 345
Author(s):  
Bich Ngoc Nguyen Thi ◽  
Viet Ha Chu ◽  
Thi Thuy Nguyen ◽  
Trong Nghia Nguyen ◽  
Hong Nhung Tran

A flexible low-cost paper-based surface enhanced Raman scattering (SERS) substrate was successfully manufactured by a direct chemical reduction of silver nanoparticles (AgNPs) onto a common commercially available filter paper. Characterization of fabricated paper-based SERS substrate and the influences of the silver nitrate concentration, type of paper on SERS signal were systematically investigated. In order to fabricate SERS substrates with the highest quality, a suitable one from four different types of filter papers was chosen. The prepared SERS substrates have capability for detecting food toxic chemicals. The test of detecting melamine in aqueous solution was successfully demonstrated with the limit of detection for melamine is 10-7M.

The Analyst ◽  
2017 ◽  
Vol 142 (24) ◽  
pp. 4756-4764 ◽  
Author(s):  
Yi Li ◽  
Rui Lu ◽  
Jinyou Shen ◽  
Weiqing Han ◽  
Xiuyun Sun ◽  
...  

A flexible 3D hybrid PC/Ag surface-enhanced Raman scattering (SERS) substrate was fabricated through the combination of electrospinning and in situ chemical reduction.


2021 ◽  
Author(s):  
Jun Dong ◽  
Yan Wang ◽  
Qianying Wang ◽  
Yi Cao ◽  
qingyan han ◽  
...  

Abstract Surface-enhanced Raman scattering (SERS) is recognized as one of the most favored techniques for enhancing Raman signals. The morphology of the SERS substrate profoundly affects molecular Raman spectra. This study aimed to construct a ring-mounted nanostructured substrate via liquid–liquid two-phase self-assembly (LLSA) incorporated with anodic aluminum oxide (AAO) membrane transfer techniques. High-density nanoparticles (NPs) assembled on AAO membranes were ascribed to reduce the diameters of the nanopores, with Au–Ag alloy NPs to regulate the dielectric constant so as to reveal the local surface plasmon resonance tunability. SERS engineered in this way allowed for the fabrication of a ring-mounted nanostructured substrate where the distribution density of NPs and dielectric constant could be independently fine-tuned. High SERS activity of the substrate was revealed by detecting the enhanced factor of crystal violet and rhodamine 6G molecules, which was up to 1.56 × 106. Moreover, SERS of thiram target molecules confirmed the supersensitivity and repeatability of the substrate as a practical application. The results of this study manifested a low-cost but high-efficiency ring-mounted nanostructured SERS substrate that might be suitable in many fields, including biosensing, medical research, environmental monitoring, and optoelectronics.


NANO ◽  
2017 ◽  
Vol 12 (05) ◽  
pp. 1750052 ◽  
Author(s):  
Xiuhua Li ◽  
Jian Lin ◽  
Junhong Zhao

A novel composite nanostructure which is made up of TiO2 three dimensionally ordered macroporous (3DOM) nanostructure and TiO2 nanorods (NRs) has been successfully synthesized through a combination of colloidal crystal template technology and hydrothermal method, then we achieved its combination with Ag nanoparticles (NPs) via a silver mirror reaction. We studied the SERS (Surface-Enhanced Raman Scattering) performance of the obtained structure, the results show that our samples are very sensitive substrates when being used to detect dye R6G molecules, with a low detection concentration of 10[Formula: see text] M. This proves that it is a promising material in the area of analyzing and molecule-level detecting as a kind of novel and low-cost SERS substrate.


2019 ◽  
Author(s):  
Jingran Zhang ◽  
Tianqi Jia ◽  
Yongda Yan ◽  
Li Wang ◽  
Peng Miao ◽  
...  

Nanostructures and nanoparticles are two typical structures which have already been widely employed as the Surface Enhanced Raman Scattering (SERS) substrates. In most studies, they are employed separately as SERS substrates. Recently, the hierarchical structures including nanostructures and nanoparticles present better SERS characteristics. However, how to machine such hierarchical structures is a big problem. In the present study, a novel method integrating the nanoindentation process and chemical redox reaction to machine the hierarchical SERS substrate is provided. Micro/nanostructures are formed on the Cu(110) plane first, and then Ag nanoparticles are generated on the structured Copper surface. Effects of parameters of the indentation process and the corrosion times in the AgNO3 solutions on the Raman intensities of the SERS substrate with hierarchical structures are experimentally studied. The intensity and distribution of the electric field of single and multi Ag nanoparticles on the surface of plane and micro/nanostructures are studied with the COMSOL software. The feasibility of the hierarchical SERS substrate is verified using R6G molecules. Finally, the enhancement factor of malachite green molecules can reach to 5.089×109, which proves that the method is simple, replicable and low cost method for machining the hierarchical SERS substrate.


RSC Advances ◽  
2019 ◽  
Vol 9 (38) ◽  
pp. 21771-21776 ◽  
Author(s):  
Nan Zhao ◽  
Hefu Li ◽  
Cunwei Tian ◽  
Yanru Xie ◽  
Zhenbao Feng ◽  
...  

Three-dimensional (3D) plasmonic structures have been intensively investigated as high performance surface enhanced Raman scattering (SERS) substrates.


Nanoscale ◽  
2014 ◽  
Vol 6 (13) ◽  
pp. 7232-7236 ◽  
Author(s):  
Yi-Chung Wang ◽  
Joseph S. DuChene ◽  
Fengwei Huo ◽  
Wei David Wei

The widespread implementation of surface enhanced Raman scattering (SERS) techniques for chemical and biological detection requires an inexpensive, yet robust SERS substrate with high sensitivity and reproducibility.


2019 ◽  
Vol 9 (7) ◽  
pp. 1387 ◽  
Author(s):  
Alexandra Teixeira ◽  
Juan Hernández-Rodríguez ◽  
Lei Wu ◽  
Kevin Oliveira ◽  
Krishna Kant ◽  
...  

Surface-enhanced Raman scattering (SERS) spectroscopy stands out due to its sensitivity, selectivity, and multiplex ability. The development of ready-to-use, simple, and low-cost SERS substrates is one of the main challenges of the field. In this paper, the intrinsic reproducibility of microfluidics technology was used for the fabrication of self-assembled nanoparticle structures over a paper film. The paper SERS substrates were fabricated by assembling anisotropic particles, gold nanostars (GNSs), and nanorods (NRs) onto paper to offer an extra enhancement to reach ultra-sensitive detection limits. A polydimethylsiloxane PDMS-paper hybrid device was used to control the drying kinetics of the nanoparticles over the paper substrate. This method allowed a high reproducibility and homogeneity of the fabrication of SERS substrates that reach limits of detection down to the picomolar range. This simple and low-cost fabrication of a paper-based sensing device was tested for the discrimination of different cell lineages.


2013 ◽  
Vol 562-565 ◽  
pp. 826-831 ◽  
Author(s):  
Jie Zhang ◽  
Yu Lin Chen ◽  
Tuo Fan ◽  
Yong Zhu

We reported on a study upon a Surface-enhanced Raman Scattering (SERS) substrate produced from a large area multi-walled carbon nanotube (MWCNT) films decorated with Au nanoparticles. The morphology and spectrum of the MWCNTs/Au composite structure was characterized with scanning electron microscopy and spectrophotometer. The SERS signals of Rhodamine 6G (R6G) absorbed on the substrate were improved, which could contribute to the enlarged surface area for adsorption of molecules and Localized Plasmon Resonance Effect. The results indicated that it is potential to produce sensitive SERS substrates via further fine-tuning of size, shape of the nanostructure.


Sign in / Sign up

Export Citation Format

Share Document