scholarly journals Effects of Crystallite Sizes of Pt/HZSM-5 Zeolite Catalysts on the Hydrodeoxygenation of Guaiacol

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2246
Author(s):  
Haonan Duan ◽  
Yajie Tian ◽  
Siyuan Gong ◽  
Bofeng Zhang ◽  
Zongjing Lu ◽  
...  

Herein, Pt/HZSM-5 zeolite catalysts with different crystallite sizes ranging from nanosheet (~2 nm) to bulk crystals (~1.5 μm) have been prepared for the hydrodeoxygenation of guaiacol, and their effects on the reaction pathway and product selectivity were explored. HZSM-5 zeolites prepared by seeding (Pt/Z-40: ~40 nm) or templating (Pt/NS-2: ~2 nm) fabricated intra-crystalline mesopores and thus enhanced the reaction rate by promoting the diffusion of various molecules, especially the bulky ones such as guaiacol and 2-methoxycyclohexanol, leading to a higher cyclohexane selectivity of up to 80 wt % (both for Pt/Z-40 and Pt/NS-2) compared to 70 wt % for bulky HZSM-5 (Pt/CZ: ~1.5 μm) at 250 °C and 120 min. Furthermore, decreased crystallite sizes more effectively promoted the dispersion of Pt particles than bulky HZSM-5 (Pt/Z-400: ~400 nm and Pt/CZ). The relatively low distance between Pt and acidic sites on the Pt/Z-40 catalyst enhanced the metal/support interaction and induced the reaction between the guaiacol molecules adsorbed on the acidic sites and the metal-activated hydrogen species, which was found more favorable for deoxygenation than for hydrogenation of oxygen-containing molecules. In addition, Pt/NS-2 catalyst with a highly exposed surface facilitated more diverse reaction pathways such as alkyl transfer and isomerization.

Author(s):  
Jesús Andrés Tavizón Pozos ◽  
Gerardo Chávez Esquivel ◽  
Ignacio Cervantes Arista ◽  
José Antonio de los Reyes Heredia ◽  
Víctor Alejandro Suárez Toriello

Abstract The influence of Al2O3–ZrO2 and TiO2–ZrO2 supports on NiMo-supported catalysts at a different sulfur concentration in a model hydrodeoxygenation (HDO)-hydrodesulfurization (HDS) co-processing reaction has been studied in this work. A competition effect between phenol and dibenzothiophene (DBT) for active sites was evidenced. The competence for the active sites between phenol and DBT was measured by comparison of the initial reaction rate and selectivity at two sulfur concentrations (200 and 500 ppm S). NiMo/TiO2–ZrO2 was almost four-fold more active in phenol HDO co-processed with DBT than NiMo/Al2O3–ZrO2 catalyst. Consequently, more labile active sites are present on NiMo/TiO2–ZrO2 than in NiMo/Al2O3–ZrO2 confirmed by the decrease in co-processing competition for the active sites between phenol and DBT. DBT molecules react at hydrogenolysis sites (edge and rim) preferentially so that phenol reacts at hydrogenation sites (edge and edge). However, the hydrogenated capacity would be lost when the sulfur content was increased. In general, both catalysts showed similar functionalities but different degrees of competition according to the highly active NiMoS phase availability. TiO2–ZrO2 as the support provided weaker metal-support interaction than Al2O3–ZrO2, generating a larger fraction of easily reducible octahedrally coordinated Mo- and Ni-oxide species, causing that NiMo/TiO2–ZrO2 generated precursors of MoS2 crystallites with a longer length and stacking but with a higher degree of Ni-promotion than NiMo/Al2O3–ZrO2 catalyst.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 706
Author(s):  
Lulu He ◽  
Yuanhang Ren ◽  
Bin Yue ◽  
Shik Chi Edman Tsang ◽  
Heyong He

Ni-based catalysts supported on alumina derived from the pseudo-boehmite prepared by the impregnation method were employed for catalytic dry reforming of methane reaction at the temperature of 550–750 °C. The effect of calcination temperature on physicochemical properties such as the Ni dispersion, reduction degree, nickel crystallite sizes, and metal–support interaction of the catalysts was investigated. The characterization results show that increasing the catalyst calcination temperature leads to the formation of nickel-alumina spinel, which enhances the metal–support interaction and increases the reduction temperature. The nickel nanoparticle size decreases and the effective dispersion increases with the increasing calcination temperature from 450 °C to 750 °C due to the formation of nickel aluminate. The catalyst calcined at 750 °C exhibits the highest CH4 and CO2 conversion owing to the small Ni0 active sites and high Ni dispersion. In a 200 h stability test in dry reforming of methane at 700 °C, the Ni/Al2O3-750 catalyst exhibits excellent catalytic stability and anti-coking ability.


Sign in / Sign up

Export Citation Format

Share Document