scholarly journals Enhanced Photocatalytic Hydrogen Production of the Polyoxoniobate Modified with RGO and PPy

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2449
Author(s):  
Shiliang Heng ◽  
Lei Li ◽  
Weiwei Li ◽  
Haiyan Li ◽  
Jingyu Pang ◽  
...  

The development of high-efficiency, recyclable, and inexpensive photocatalysts for water splitting for hydrogen production is of great significance to the application of solar energy. Herein, a series of graphene-decorated polyoxoniobate photocatalysts Nb6/PPy-RGO (Nb6 = K7HNb6O19, RGO = reduced graphene oxide, PPy = polypyrrole), with the bridging effect of polypyrrole were prepared through a simple one-step solvothermal method, which is the first example of polyoxoniobate-graphene-based nanocomposites. The as-fabricated photocatalyst showed a photocatalytic H2 evolution activity without any co-catalyst. The rate of 1038 µmol g−1 in 5 h under optimal condition is almost 43 times higher than that of pure K7HNb6O19·13H2O. The influencing factors for photocatalysts in photocatalytic hydrogen production under simulated sunlight were studied in detail and the feasible mechanism is presented in this paper. These results demonstrate that Nb6O19 acts as the main catalyst and electron donor, RGO provides active sites, and PPy acted as an electronic bridge to extend the lifetime of photo-generated carriers, which are crucial factors for photocatalytic H2 production.

2020 ◽  
Vol 44 (8) ◽  
pp. 3471-3477 ◽  
Author(s):  
Zhanbin Jin ◽  
Tingting Wei ◽  
Fengyan Li ◽  
Qiu Zhang ◽  
Lin Xu

NixN/Zn0.5Cd0.5S composites displayed better photocatalytic hydrogen production from water in comparison with pristine Zn0.5Cd0.5S (ZCS), as well as Pt/ZCS and Ni3N/ZCS.


2019 ◽  
Vol 55 (46) ◽  
pp. 6499-6502 ◽  
Author(s):  
Zhi-Qiang Jiang ◽  
Xing-Liang Chen ◽  
Jin Lu ◽  
Yu-Feng Li ◽  
Tian Wen ◽  
...  

The Ni(ii) coordination polymer nanosheets were successfully exfoliated, which can be used as co-catalysts (Ni-CPNS@CdS). The optimized Ni-CPNS@CdS catalyst showed a super high visible-light photocatalytic hydrogen production activity.


Catalysts ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 584 ◽  
Author(s):  
Mikel Imizcoz ◽  
Alberto V. Puga

A systematic study on the solar photocatalytic hydrogen production (photoreforming) performance of M/TiO2 (M = Au, Ag, Cu or Pt) using glucose as a model substrate, and further extended to lignocellulose hydrolysates and wastewaters, is herein presented. Three metal (M) co-catalyst loading methods were tested. Variation of the type of metal results in significantly dissimilar H2 production rates, albeit the loading method exerts an even greater effect in most cases. Deposition-precipitation (followed by hydrogenation) or photodeposition provided better results than classical impregnation (followed by calcination). Interestingly, copper as a co-catalyst performed satisfactorily as compared to Au, and slightly below Pt, thus representing a realistic inexpensive alternative to noble metals. Hydrolysates of either α-cellulose or rice husks, obtained under mild conditions (short thermal cycles at 160 °C), were rich in saccharides and thus suitable as feedstocks. Nonetheless, the presence of inhibiting byproducts hindered H2 production. A novel photocatalytic UV pre-treatment method was successful to initially remove the most recalcitrant portion of these minor products along with H2 production (17 µmol gcat−1 h−1 on Cu/TiO2). After a short UV step, simulated sunlight photoreforming was orders of magnitude more efficient than without the pre-treatment. Hydrogen production was also directly tested on two different wastewater streams, that is, a municipal influent and samples from operations in a fruit juice producing plant, with remarkable results obtained for the latter (up to 115 µmol gcat−1 h−1 using Au/TiO2).


2019 ◽  
Vol 3 (4) ◽  
pp. 79 ◽  
Author(s):  
Ikki Tateishi ◽  
Mai Furukawa ◽  
Hideyuki Katsumata ◽  
Satoshi Kaneco

A Cu+ and Ga3+ co-doped ZnIn2S4 photocatalyst (Zn(1−2x)(CuGa)xIn2S4) with controlled band gap was prepared via a simple one-step solvothermal method. Zn(1−2x)(CuGa)xIn2S4 acted as an efficient photocatalyst for H2 evolution under visible light irradiation (λ > 420 nm; 4500 µW/cm2). The effects of the (Cu and Ga)/Zn molar ratios of Zn(1−2x)(CuGa)xIn2S4 on the crystal structure (hexagonal structure), morphology (microsphere-like flower), optical property (light harvesting activity and charge hole separation ability), and photocatalytic activity have been investigated in detail. The maximum H2 evolution rate (1650 µmol·h−1·g−1) was achieved over Zn0.84(CuGa)0.13In2S4, showing a 3.3 times higher rate than that of untreated ZnIn2S4. The bandgap energy of Zn(1−2x)(CuGa)xIn2S4 decreased from 2.67 to 1.90 eV as the amount of doping Cu+ and Ga3+ increased.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2295
Author(s):  
Simin Yin ◽  
Shun Liu ◽  
Yongfeng Yuan ◽  
Shaoyi Guo ◽  
Zhaohui Ren

In this work, octahedral shaped PbTiO3-TiO2 nanocomposites have been synthesized by a facile hydrothermal method, where perovskite ferroelectric PbTiO3 nanooctahedra were employed as substrate. The microstructures of the composites were investigated systemically by using XRD, SEM, TEM and UV-Vis spectroscopy. It was revealed that anantase TiO2 nanocrystals with a size of about 5 nm are dispersed on the surface of the {111} facets of the nanooctahedron crystals. Photocatalytic hydrogen production of the nanocomposites has been evaluated in a methanol alcohol-water solution under UV light enhanced irradiation. The H2 evolution rate of the nanocomposites increased with an increased loading of TiO2 on the nanooctahedra. The highest H2 evolution rate was 630.51 μmol/h with the highest concentration of TiO2 prepared with 2 mL tetrabutyl titanate, which was about 36 times higher than that of the octahedron substrate. The enhanced photocatalytic reactivity of the nanocomposites is possibly ascribed to the UV light absorption of the nanooctahedral substrates, efficient separation of photo-generated carriers via the interface and the reaction on the surface of the TiO2 nanocrystals.


Author(s):  
Chao Zhang ◽  
Baoquan Liu ◽  
Weiping Li ◽  
Xiangxue Liu ◽  
Ke Wang ◽  
...  

Well-designed honeycomb Co3O4@CdS (H-Co3O4@CdS) was fabricated via a one-step strategy for efficient water splitting. During the decoration of CdS, honeycomb Co3O4 (H-Co3O4) with macropore was formed simultaneously. H-Co3O4 could enhance...


2017 ◽  
Vol 5 (20) ◽  
pp. 3718-3727 ◽  
Author(s):  
Saibo Chen ◽  
Hao Nan ◽  
Xuan Zhang ◽  
Yuting Yan ◽  
Zhou Zhou ◽  
...  

Bi2WO6 functionalized reduced oxide nanocomposites were prepared by a one-step solvothermal method and their photoelectrochemical performance was greatly improved.


Sign in / Sign up

Export Citation Format

Share Document