loading methods
Recently Published Documents


TOTAL DOCUMENTS

199
(FIVE YEARS 75)

H-INDEX

21
(FIVE YEARS 5)

2021 ◽  
Vol 60 (4) ◽  
pp. 155-169
Author(s):  
Karol Nehring ◽  
Michał Kłodawski ◽  
Roland Jachimowski ◽  
Piotr Klimek ◽  
Rostislav Vašek

The article presents the issues of a container train loading at the land intermodal terminal. This issue was considered from the point of view of the distance covered by the loading devices and the duration of loading works, which was influenced by the arrangement of containers on the storage yard and the configuration of pins on the wagons. The conducted research was dictated by the small number of publications on loading an intermodal train, especially from the point of view of pin configuration on wagons. The vast majority of the literature is devoted in this field to marine intermodal terminals, which operating characteristics are different from inland terminals. The importance of this problem resulting from the growing turnover of containers transported by rail transport was also pointed out. The systematic increase of this type of transport and the depletion of the intermodal services' operating capability makes it necessary to improve the train loading process. For the purposes of the research, the issues of containers of various sizes loading onto wagons planning with various pin configurations were presented. A literature review was carried out in the field of train loading methods and strategies. A mathematical model was developed for the decision situation under consideration. The equations defining the most important elements of the considered problem were presented in the general form. This model was implemented in the FlexSim simulation environment. The constructed simulation model was used to develop 12 variants of the approach to an intermodal train loading. The train loading tests were performed both for the random arrangement of containers on the storage yard and for the random arrangement of pins on the wagons. The obtained results made it possible to determine how the knowledge of the arrangement of pins on the wagons influences the planning of train loading and increases the efficiency of loading devices.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2389
Author(s):  
Ruixue Zhai ◽  
Zhuangkun Zhao ◽  
Jianhao Yang ◽  
Bangbang Ma ◽  
Gaochao Yu

Pre-stretching and post-bending are the simplest loading methods for the profile stretch-bending technical process. The inner layers of the profile are stretched and then compressed during the loading process. Considering the Bauschinger effect of metal materials, a new material model called the proportional kinematic hardening model was proposed. The stretch-bending mechanical model was established under a pre-stretching and post-bending loading path. The stress and strain on the cross section of profiles were analyzed. The analytic expressions of curvature radius of the strain neutral layer and bending moment were derived after loading. The analytic method for determining the curvature radius of the geometric center layer after unloading and springback during stretch-bending was established. The rectangular section ST12 profile with symmetrical characteristics is adopted, the stretch-bending experimental results show that the new proportional kinematic hardening model is more accurate than the classical kinematic hardening model in predicting the stretch-bending springback.


2021 ◽  
Vol 1209 (1) ◽  
pp. 012050
Author(s):  
O Nespesny ◽  
J Pencik ◽  
J Vystrcil ◽  
D Beckovsky

Abstract Cement fiber boards (CFB) are special group that are used in a wide range of structural civil engineering. For the correct design of a cement fibre board structure, it is important to define their material and elastic constants, which are usually determined by destructive tests. The paper deals with a definition of a suitable method of loading for the determination of basic materials and elastic constants of cement fiber boards reinforced with organic fibers loaded in the mid-plane. The publication compares and evaluates load tests by three-point and four-point bend.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Jianxiong Zheng ◽  
Jie Xiang ◽  
Xiaoreng Feng ◽  
Fei Liu ◽  
Keyu Chen ◽  
...  

Abstract Background The aim of this study was to investigate the applicable safety and biomechanical stability of iliosacral triangular osteosynthesis (ITO) through 3D modeling and finite element (FE) analysis. Methods Pelvic CT imaging data from 100 cases were imported into Mimics software for the construction of 3D pelvic models. The S2-alar-iliac (S2AI) screws and S2 sacroiliac screws were placed in the S2 segment with optimal distribution and their compatibility rate on the S2 safe channel was observed and analyzed. In the FE model, the posterior pelvic ring was fixed with two transsacral screws (TTS), triangular osteosynthesis (TO) and ITO, respectively. Four different loading methods were implemented in sequence to simulate the force in standing, flexion, right bending, and left twisting, respectively. The relative displacement and change in relative displacement of the three fixing methods were recorded and analyzed. Results The theoretical compatibility rate of S2AI screw and S2 sacroiliac screw in S2 segment was 94%, of which 100% were in males and 88% in females. In the FE model, in terms of overall relative displacement, TTS group showed the smallest relative displacement, the ITO group showed the second smallest, and the TO group the largest relative displacement. The change in relative displacement of the TTS group displayed the smaller fluctuations in motion. The change in relative displacement of the TO group under right bending and left twisting displayed larger fluctuations, while the ITO group under flexion displayed larger fluctuations. Conclusions The simultaneous placement of S2AI screw and S2 sacroiliac screw in the S2 segment is theoretically safe. Although the biomechanical stability of ITO is slightly lower than TTS, it is better than TO, and can be used as a new method for the treatment of posterior pelvic ring injuries.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yao Sun ◽  
Guoliang Liu ◽  
Kai Zhang ◽  
Qian Cao ◽  
Tongjun Liu ◽  
...  

AbstractExosomes are extracellular vesicles secreted by various cells, mainly composed of lipid bilayers without organelles. In recent years, an increasing number of researchers have focused on the use of exosomes for drug delivery. Targeted drug delivery in the body is a promising method for treating many refractory diseases such as tumors and Alzheimer's disease (AD). Finding a suitable drug delivery carrier in the body has become a popular research today. In various drug delivery studies, the exosomes secreted by mesenchymal stem cells (MSC-EXOs) have been broadly researched due to their immune properties, tumor-homing properties, and elastic properties. While MSC-EXOs have apparent advantages, some unresolved problems also exist. This article reviews the studies on MSC-EXOs for drug delivery, summarizes the characteristics of MSC-EXOs, and introduces the primary production and purification methods and drug loading methods to provide solutions for existing problems and suggestions for future studies.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6532
Author(s):  
Liang Shang ◽  
Xinglu Zhou ◽  
Jiarui Zhang ◽  
Yujie Shi ◽  
Lei Zhong

Breast cancer (BC) is the most common malignant tumor in women worldwide, which seriously threatens women’s physical and mental health. In recent years, photodynamic therapy (PDT) has shown significant advantages in cancer treatment. PDT involves activating photosensitizers with appropriate wavelengths of light, producing transient levels of reactive oxygen species (ROS). Compared with free photosensitizers, the use of nanoparticles in PDT shows great advantages in terms of solubility, early degradation, and biodistribution, as well as more effective intercellular penetration and targeted cancer cell uptake. Under the current circumstances, researchers have made promising efforts to develop nanocarrier photosensitizers. Reasonably designed photosensitizer (PS) nanoparticles can be achieved through non-covalent (self-aggregation, interfacial deposition, interfacial polymerization or core-shell embedding and physical adsorption) or covalent (chemical immobilization or coupling) processes and accumulate in certain tumors through passive and/or active targeting. These PS loading methods provide chemical and physical stability to the PS payload. Among nanoparticles, metal nanoparticles have the advantages of high stability, adjustable size, optical properties, and easy surface functionalization, making them more biocompatible in biological applications. In this review, we summarize the current development and application status of photodynamic therapy for breast cancer, especially the latest developments in the application of metal nanocarriers in breast cancer PDT, and highlight some of the recent synergistic therapies, hopefully providing an accessible overview of the current knowledge that may act as a basis for new ideas or systematic evaluations of already promising results.


2021 ◽  
Vol 2021 ◽  
pp. 1-29
Author(s):  
Zhengyang Song ◽  
Yunfeng Wu ◽  
Zhen Yang ◽  
Xin Cai ◽  
Yunzhong Jia ◽  
...  

This article presents the results for cyclic uni/triaxial tests on the deeply seated granite samples drilled from a −915 m deep tunnel in Sanshandao (SSD) gold mine. The monotonic and cyclic tests were carried out to observe the mechanical responses of the granite samples under different loading regimes. The disparities concerning the strain evolution and compressive strength of granite samples considering monotonic and cyclic uniaxial and triaxial loading are presented. Deformation behaviour, dissipated energy, and hysteresis are documented and evaluated. Quantitative correlations between strain evolution and cyclic stress levels are revealed. The amount of energy transformation during uniaxial and triaxial cyclic loading is determined. The impacts of confining pressure level on ultimate strain, energy dissipation, and stress-strain phase shift are presented. The mechanical responses of the granite samples subjected to different stress paths and loading strategies are summarised, and corresponding interpretations are given to clarify the differences of mechanical behaviour encountered in distinct loading methods.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6265
Author(s):  
Urszula Janus-Galkiewicz ◽  
Jaroslaw Galkiewicz

This article presents the results of a simulation in which smooth cylindrical and ring-notched samples were subjected to monotonic and fatigue loads in an ultra-short-life range, made of Inconel 718 super alloy. The samples displayed different behaviors as a result of different geometries that introduced varying levels of stress triaxiality and loading methods. The simulations used the Wierzbicki–Bai model, which took into account the influence of stress tensors and stress-deviator invariants on the behavior of the material. The difference in the behaviors of the smoothed and notched specimens subjected to tensile and fatigue loads were identified and described. The numerical results were qualitatively supported by the results of the experiments presented in the literature.


Sign in / Sign up

Export Citation Format

Share Document