scholarly journals Modelling of Dynamic Behaviour in Magnetic Nanoparticles

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3396
Author(s):  
Max Tigo Rietberg ◽  
Sebastiaan Waanders ◽  
Melissa Mathilde Horstman-van de Loosdrecht ◽  
Rogier R. Wildeboer ◽  
Bennie ten Haken ◽  
...  

The efficient development and utilisation of magnetic nanoparticles (MNPs) for applications in enhanced biosensing relies on the use of magnetisation dynamics, which are primarily governed by the time-dependent motion of the magnetisation due to externally applied magnetic fields. An accurate description of the physics involved is complex and not yet fully understood, especially in the frequency range where Néel and Brownian relaxation processes compete. However, even though it is well known that non-zero, non-static local fields significantly influence these magnetisation dynamics, the modelling of magnetic dynamics for MNPs often uses zero-field dynamics or a static Langevin approach. In this paper, we developed an approximation to model and evaluate its performance for MNPs exposed to a magnetic field with varying amplitude and frequency. This model was initially developed to predict superparamagnetic nanoparticle behaviour in differential magnetometry applications but it can also be applied to similar techniques such as magnetic particle imaging and frequency mixing. Our model was based upon the Fokker–Planck equations for the two relaxation mechanisms. The equations were solved through numerical approximation and they were then combined, while taking into account the particle size distribution and the respective anisotropy distribution. Our model was evaluated for Synomag®-D70, Synomag®-D50 and SHP-15, which resulted in an overall good agreement between measurement and simulation.

2015 ◽  
Vol 1 (1) ◽  
pp. 249-253 ◽  
Author(s):  
André Behrends ◽  
Matthias Graeser ◽  
Thorsten M. Buzug

AbstractImage quality in the new imaging modality magnetic particle imaging (MPI) heavily relies on the quality of the magnetic nanoparticles in use. Therefore, it is crucial to understand the behaviour of such particles. A common technique to analyze the behaviour of the particles is magnetic particle spectrometry (MPS). However, most spectrometers are limited to measurements at a single or multiple discrete excitation frequencies. This paper introduces a frequency-tunable spectrometer, able to perform measurements in the range of 100 Hz - 24kHz.


2012 ◽  
Vol 48 (11) ◽  
pp. 3780-3783 ◽  
Author(s):  
Frank Ludwig ◽  
Thilo Wawrzik ◽  
Takashi Yoshida ◽  
Nicole Gehrke ◽  
Andreas Briel ◽  
...  

2014 ◽  
Vol 50 (11) ◽  
pp. 1-4 ◽  
Author(s):  
Frank Ludwig ◽  
Christian Kuhlmann ◽  
Thilo Wawrzik ◽  
Jan Dieckhoff ◽  
Aidin Lak ◽  
...  

2021 ◽  
Vol 7 (2) ◽  
pp. 319-322
Author(s):  
Norbert Löwa ◽  
Rebecca Hoffmann ◽  
Dirk Gutkelch ◽  
Olaf Kosch ◽  
Silvio Dutz ◽  
...  

Abstract Phantoms are essential tools for the development and characterization of Magnetic Particle Imaging (MPI), an imaging technique that can quantitatively map the spatial distribution of magnetic nanoparticles (MNP). The objective of this study was to develop and validate a modular MPI phantom kit with high versatility for platform-independent quality assurance and the assembling of defined geometries in MPI. It was shown that the developed MPI phantom kit can be used for both application scenario testing and quality assurance in MPI which provides the basis for future reference phantoms to directly compare existing scanners within the MPI community.


2021 ◽  
Author(s):  
Chang Lu ◽  
Linbo Han ◽  
Joanna Wang ◽  
Jiacheng Wan ◽  
Guosheng Song ◽  
...  

Magnetic particle imaging (MPI) has recently emerged as a promising non-invasive imaging technique. Engineering of magnetic nanoparticles (MNPs) is effective ways to enhance MPI sensitivity and spatial resolution.


2019 ◽  
Author(s):  
Safyzan Salim ◽  
Muhammad Mahadi Abdul Jamil ◽  
Abdulkadir Abubakar Sadiq ◽  
Noordin Asimi Mohd Noor ◽  
Nur Adilah Abd Rahman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document