scholarly journals Chitosan-Based Nanoparticles Containing Cherry Extract from Prunus avium L. to Improve the Resistance of Endothelial Cells to Oxidative Stress

Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1598 ◽  
Author(s):  
Denise Beconcini ◽  
Angela Fabiano ◽  
Ylenia Zambito ◽  
Roberto Berni ◽  
Tatiana Santoni ◽  
...  

Cherries are known for their nutraceutical properties, in particular for their antioxidant ability due to their polyphenol content, which causes a reduction of cardiovascular disease (CVD) risk factors. However, once ingested these molecules are degraded in the Gastrointestinal (GI) tract before reaching the blood, which is the action site. The object of the present work is to evaluate the ability of cherry extract (CE), encapsulated in nanoparticles (NPs) based on different chitosan (Ch) derivatives, to promote a protective effect of human umbilical vein endothelial cells (HUVECs) involved in vascular dysfunction against oxidative stress. CE-loaded NPs based on quaternary ammonium chitosan (NP1) and an S-protected thiolated derivative thereof (NP2) were prepared. The mean particle size (NP1 344.9 ± 17.8, NP2 339.9 ± 68.2 nm), the polydispersity index, the encapsulation efficiency (NP1 78.4 ± 4.5, NP2 79.8 ± 0.6%), and the zeta potential (NP1 14.8 ± 0.3, NP2 15.8 ± 0.5 mV) did not appear to be significantly different. Both NP types improved the CE apparent permeation parameters with respect to the control. Conversely, CE-loaded NP2 protected HUVECs from oxidative stress and reduced reactive oxygen species (ROS) production more than CE-loaded NP1 and free CE. In addition to promoting HUVEC resistance, NP2 could be a useful tool to overcome the problem of cherry seasonality.

2019 ◽  
Vol 20 (7) ◽  
pp. 1759 ◽  
Author(s):  
Denise Beconcini ◽  
Angela Fabiano ◽  
Rossella Di Stefano ◽  
Maria Helena Macedo ◽  
Francesca Felice ◽  
...  

Polyphenolic compounds contained in cherry extract (CE) are well known for their antioxidant and anti-inflammatory properties. Unfortunately, most of these natural compounds have low oral bioavailability, reducing their widespread use. Here, different concentrations of polyphenol-rich CE from Tuscany (Italy), encapsulated in poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs), were compared with those encapsulated in two NP types, different from each other in terms of mucoadhesivity, obtained with chitosan derivatives (Ch-der), regarding CE gastrointestinal (GI) permeability and protective effect on oxidative stress. Different NP systems were physico-chemically characterized, and the antioxidant GI permeability was evaluated in a triple-cell co-culture model (Caco-2/HT29-MTX/Raji B), resembling the intestine. PLGA NPs efficiently entrapped CE (up to 840 µg gallic acid equivalent (GAE)/mL) without altering size (210 nm), polydispersity index (0.05), or zeta potential (−10.7 mV). Such NPs promoted permeation of encapsulated CE at a CE polyphenolic concentration of at least 2 µg GAE/mL. More mucoadhesive NPs from Ch-der, coded quaternary ammonium S-protected thiolated chitosan (QA-Ch-S-pro) NP, promoted CE GI permeation of 0.5 µg GAE/mL. At higher concentrations of Ch-der polymers, the resulting NPs containing CE were toxic toward Caco-2 and HT29-MTX cells. CE protected human umbilical vein endothelial cells (HUVECs) from oxidative stress and maintained its activity when entrapped in PLGA NPs. CE encapsulated in QA-Ch-S-pro NP protected HUVECs from oxidative stress, even more effectively than non-encapsulated CE. Furthermore, mucoadhesive NPs from Ch-der were more effective antioxidant protectors than PLGA NPs, but less cytotoxic PLGA NPs could be more useful when comparatively high therapeutic antioxidant doses are needed.


Marine Drugs ◽  
2021 ◽  
Vol 19 (2) ◽  
pp. 86
Author(s):  
Yunok Oh ◽  
Chang-Bum Ahn ◽  
Jae-Young Je

Oxidative stress-induced endothelial dysfunction is strongly linked to the pathogenesis of cardiovascular diseases. A previous study revealed that seahorse hydrolysates ameliorated oxidative stress-mediated human umbilical vein endothelial cells (HUVECs) injury. However, the responsible compounds have not yet been identified. This study aimed to identify cytoprotective peptides and to investigate the molecular mechanism underlying the cytoprotective role in H2O2-induced HUVECs injury. After purification by gel filtration and HPLC, two peptides were sequenced by liquid chromatography-tandem mass spectrometry as HGSH (436.43 Da) and KGPSW (573.65 Da). The synthesized peptides and their combination (1:1 ratio) showed significant HUVECs protection effect at 100 μg/mL against H2O2-induced oxidative damage via significantly reducing intracellular reactive oxygen species (ROS). Two peptides and their combination treatment resulted in the increased heme oxygenase-1 (HO-1), a phase II detoxifying enzyme, through the activation of nuclear transcription factor-erythroid 2-related factor (Nrf2). Additionally, cell cycle and nuclear staining analysis revealed that two peptides and their combination significantly protected H2O2-induced cell death through antiapoptotic action. Two peptides and their combination treatment led to inhibit the expression of proapoptotic Bax, the release of cytochrome C into the cytosol, the activation of caspase 3 by H2O2 treatment in HUVECs, whereas antiapoptotic Bcl-2 expression was increased with concomitant downregulation of Bax/Bcl-2 ratio. Taken together, these results suggest that seahorse-derived peptides may be a promising agent for oxidative stress-related cardiovascular diseases.


2007 ◽  
Vol 566 (1-3) ◽  
pp. 1-10 ◽  
Author(s):  
Hiroshi Tsuneki ◽  
Naoto Sekizaki ◽  
Takashi Suzuki ◽  
Shinjiro Kobayashi ◽  
Tsutomu Wada ◽  
...  

Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Madden Brewster ◽  
Anthony R Bain ◽  
Vinicius P Garcia ◽  
Hannah K Fandl ◽  
Rachel Stone ◽  
...  

Background: Chronic mountain sickness, a maladaptation to high altitude (>2,500 m) characterized by excessive erythrocytosis (EE) and often severe hypoxemia, is prevalent in Andean highlanders. EE increases the risk of cardiovascular events and contributes to vascular dysfunction. Circulating extracellular microvesicles (MVs) are key mediators of cardiovascular health and disease through their interaction with the vascular endothelium. The experimental aim of this study was to determine the effects of MVs isolated from adults with EE on endothelial cell inflammation, oxidative stress, apoptosis and nitric oxide (NO) production. Methods: Twenty-six male residents of Cerro de Pasco, Peru (4,340 m) were studied: 12 highlanders without EE (healthy; age: 40±4 yr; BMI: 26.4±1.7; Hb: 17.4±0.5 g/dL, SpO 2 : 86.9±1.0%) and 14 highlanders with EE (EE: 43±4 yr; 26.2±0.9; 24.4±0.4 g/dL; 79.7±1.6%). MVs were isolated from plasma by flow cytometry. Human umbilical vein endothelial cells were cultured and treated with MVs from either healthy or EE men. Results: MVs from highlanders with EE induced significantly higher release of interleukin (IL)-6 (89.8±2.7 vs 77.1±1.9 pg/mL) and IL-8 (62.0±2.7 vs 53.3±2.2 pg/mL) compared with MVs from healthy highlanders. Although intracellular expression of total NF-κB p65 (65.3±6.0 vs 74.9±7.8.9 AU) was not significantly affected, MVs from EE men resulted in ~25% higher (P<0.05) expression of p-NF-κB p65 (Ser536; active NF-κB) (173.6±14.3 vs 132.8±12.2 AU). Additionally, cell expression of the anti-inflammatory miR-146a and miR-181b were significantly suppressed by EE MVs. Cell oxidative stress and apoptotic susceptibility were not significantly affected by MVs from EE men. However, eNOS activation (231.3±15.5 vs 286.6±23.0 AU) and NO production (8.3±0.6 vs 10.7±0.7 μM/L) were significantly lower in cells treated with MVs from EE vs healthy men. Conclusion: Increased inflammation and decreased eNOS activity and NO production renders the vascular endothelium highly susceptible to atherosclerosis and thrombosis. Andean highlanders with EE exhibit dysfunctional circulating extracellular MVs that induce a proatherogenic endothelial phenotype contributing to their increased cardiovascular risk.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Jipeng Ouyang ◽  
Rong Li ◽  
Haiqin Shi ◽  
Jianping Zhong

Migraine is a prevalent neurological disorder which causes a huge economic burden on society. It is thought to be a neurovascular disease with oxidative stress might be involved. Curcumin, one of the major ingredients of turmeric, has potent antioxidative and anti-inflammatory properties, but whether it could be used as a potential treatment for migraine remains to be explored. In the present study, human umbilical vein endothelial cells (HUVECs) were pretreated with various concentrations of curcumin (0 μM, 10 μM, 20 μM, 30 μM, 40 μM, and 50 μM) for 12 h, thereby exposed to H2O2 (100 μM) for another 12 h. The viability of HUVECs was tested by the CCK-8 assay, and the activities of antioxidant enzymes including superoxide dismutase (SOD) and glutathione (GSH) were also examined. Intracellular reactive oxygen species (ROS) and malondialdehyde (MDA) were assayed to determine H2O2-induced oxidative stress. In addition, several cell death-related genes (p53, p21, Bax, and Bcl-2) were detected by PCR, and an apoptosis-related protein (caspase3) was evaluated by western blotting. Our results showed that curcumin improved the H2O2-induced decrease of cell viability and antioxidative enzyme activities and decreased the level of oxidative stress. As a conclusion, curcumin could mitigate H2O2-induced oxidative stress and cell death in HUVECs and may be a potential therapeutic drug for migraine.


Sign in / Sign up

Export Citation Format

Share Document