scholarly journals Statistical Decomposition of the Recent Increase in the Intensity of Tropical Storms

Oceans ◽  
2020 ◽  
Vol 1 (4) ◽  
pp. 311-325
Author(s):  
Stephen Jewson ◽  
Nicholas Lewis

In a recent paper, Kossin et al. showed that during the period from 1979 to 2017, there was a statistically significant increase in the ratio of category 3–5 to category 1–5 tropical storm fixes in the ADT-HURSAT satellite dataset of tropical cyclone observations. The sign of this increase is consistent with previously developed theory and modelling results for how tropical cyclones may change due to climate change. However, without further analysis, it is difficult to understand what the implications of this increase might be for present day tropical cyclone risk. It is also difficult to understand how tropical cyclone risk models might be adjusted to reflect this increase, since this ratio is not typically directly represented in such models. Our goal is therefore to understand the drivers for this increase in terms of changes in the numbers of fixes of different categories of storms in different basins, which are quantities that are more directly related to tropical cyclone risk and risk modelling. We use both heuristic and quantitative methods. We find that the increase in the ratio is mainly driven by a decrease in the denominator (the number of category 1–5 fixes) and to a small extent by a slight increase in the numerator (the number of category 3–5 fixes). The decrease in the denominator is mostly driven by a statistically significant reduction in the number of category 1 fixes outside the North Atlantic. The slight increase in the numerator is mostly driven by a statistically significant increase in the number of category 3–4 fixes in the North Atlantic. Based on these results, we discuss different ways in which the increase in the ratio could be represented in risk models.

2010 ◽  
Vol 138 (7) ◽  
pp. 2681-2705 ◽  
Author(s):  
Gabriele Villarini ◽  
Gabriel A. Vecchi ◽  
James A. Smith

Abstract The authors analyze and model time series of annual counts of tropical storms lasting more than 2 days in the North Atlantic basin and U.S. landfalling tropical storms over the period 1878–2008 in relation to different climate indices. The climate indices considered are the tropical Atlantic sea surface temperature (SST), tropical mean SST, the North Atlantic Oscillation (NAO), and the Southern Oscillation index (SOI). Given the uncertainties associated with a possible tropical storm undercount in the presatellite era, two different time series of counts for the North Atlantic basin are employed: one is the original (uncorrected) tropical storm record maintained by the National Hurricane Center and the other one is with a correction for the estimated undercount associated with a changing observation network. Two different SST time series are considered: the Met Office’s HadISSTv1 and NOAA’s Extended Reconstructed SST. Given the nature of the data (counts), a Poisson regression model is adopted. The selection of statistically significant covariates is performed by penalizing models for adding extra parameters and two penalty functions are used. Depending on the penalty function, slightly different models, both in terms of covariates and dependence of the model’s parameter, are obtained, showing that there is not a “single best” model. Moreover, results are sensitive to the undercount correction and the SST time series. Suggestions concerning the model to use are provided, driven by both the outcomes of the statistical analyses and the current understanding of the underlying physical processes responsible for the genesis, development, and tracks of tropical storms in the North Atlantic basin. Although no single model is unequivocally superior to the others, the authors suggest a very parsimonious family of models using as covariates tropical Atlantic and tropical mean SSTs.


2014 ◽  
Vol 29 (3) ◽  
pp. 505-516 ◽  
Author(s):  
Elizabeth A. Ritchie ◽  
Kimberly M. Wood ◽  
Oscar G. Rodríguez-Herrera ◽  
Miguel F. Piñeros ◽  
J. Scott Tyo

Abstract The deviation-angle variance technique (DAV-T), which was introduced in the North Atlantic basin for tropical cyclone (TC) intensity estimation, is adapted for use in the North Pacific Ocean using the “best-track center” application of the DAV. The adaptations include changes in preprocessing for different data sources [Geostationary Operational Environmental Satellite-East (GOES-E) in the Atlantic, stitched GOES-E–Geostationary Operational Environmental Satellite-West (GOES-W) in the eastern North Pacific, and the Multifunctional Transport Satellite (MTSAT) in the western North Pacific], and retraining the algorithm parameters for different basins. Over the 2007–11 period, DAV-T intensity estimation in the western North Pacific results in a root-mean-square intensity error (RMSE, as measured by the maximum sustained surface winds) of 14.3 kt (1 kt ≈ 0.51 m s−1) when compared to the Joint Typhoon Warning Center best track, utilizing all TCs to train and test the algorithm. The RMSE obtained when testing on an individual year and training with the remaining set lies between 12.9 and 15.1 kt. In the eastern North Pacific the DAV-T produces an RMSE of 13.4 kt utilizing all TCs in 2005–11 when compared with the National Hurricane Center best track. The RMSE for individual years lies between 9.4 and 16.9 kt. The complex environment in the western North Pacific led to an extension to the DAV-T that includes two different radii of computation, producing a parametric surface that relates TC axisymmetry to intensity. The overall RMSE is reduced by an average of 1.3 kt in the western North Pacific and 0.8 kt in the eastern North Pacific. These results for the North Pacific are comparable with previously reported results using the DAV for the North Atlantic basin.


2018 ◽  
Vol 146 (4) ◽  
pp. 1133-1155 ◽  
Author(s):  
Michael S. Fischer ◽  
Brian H. Tang ◽  
Kristen L. Corbosiero ◽  
Christopher M. Rozoff

The relationship between tropical cyclone (TC) convective characteristics and TC intensity change is explored using infrared and passive microwave satellite imagery of TCs in the North Atlantic and eastern North Pacific basins from 1989 to 2016. TC intensity change episodes were placed into one of four groups: rapid intensification (RI), slow intensification (SI), neutral (N), and weakening (W). To account for differences in the distributions of TC intensity among the intensity change groups, a normalization technique is introduced, which allows for the analysis of anomalous TC convective characteristics and their relationship to TC intensity change. A composite analysis of normalized convective parameters shows anomalously cold infrared and 85-GHz brightness temperatures, as well as anomalously warm 37-GHz brightness temperatures, in the upshear quadrants of the TC are associated with increased rates of TC intensification, including RI. For RI episodes in the North Atlantic basin, an increase in anomalous liquid hydrometeor content precedes anomalous ice hydrometeor content by approximately 12 h, suggesting convection deep enough to produce robust ice scattering is a symptom of, rather than a precursor to, RI. In the eastern North Pacific basin, the amount of anomalous liquid and ice hydrometeors increases in tandem near the onset of RI. Normalized infrared and passive microwave brightness temperatures can be utilized to skillfully predict episodes of RI, as the forecast skill of RI episodes using solely normalized convective parameters is comparable to the forecast skill of RI episodes by current operational statistical models.


2020 ◽  
Vol 33 (3) ◽  
pp. 959-975
Author(s):  
Alexandria Downs ◽  
Chanh Kieu

AbstractVarious modeling and observational studies have suggested that tropical cyclone (TC) intensity tends to increase in the future due to projected warmer sea surface temperature (SST). This study examines the effects of the tropospheric stratification that could potentially offset the direct increase of TC intensity associated with the warmer SST. Using reanalysis datasets and TC records in the northwestern Pacific and the North Atlantic basins, it is shown that there exists a consistently negative correlation between the annually averaged TC intensity and the basinwide average of the tropospheric static stability. This negative correlation is more robust in the northwestern Pacific basin when using the TC lifetime maximum intensity but is somewhat less significant in the North Atlantic basin. Further separation of the troposphere into a lower (1000–500 hPa) and an upper layer (500–200 hPa) reveals that it is the upper-tropospheric static stability that plays a more dominant role in governing the TC intensity variability. The negating effects of a stable troposphere on TC intensity as found in this study suggest a partial offset of the projected increase in the TC potential intensity due to the future warmer SST. Thus, the tropospheric static stability is one of the key large-scale factors that need to be properly taken into account in studies of long-term TC intensity change.


2016 ◽  
Vol 29 (18) ◽  
pp. 6727-6749 ◽  
Author(s):  
Young-Kwon Lim ◽  
Siegfried D. Schubert ◽  
Oreste Reale ◽  
Andrea M. Molod ◽  
Max J. Suarez ◽  
...  

Abstract Interannual variations in seasonal tropical cyclone (TC) activity (e.g., genesis frequency and location, track pattern, and landfall) over the Atlantic are explored by employing observationally constrained simulations with the NASA Goddard Earth Observing System, version 5 (GEOS-5), atmospheric general circulation model. The climate modes investigated are El Niño–Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), and the Atlantic meridional mode (AMM). The results show that the NAO and AMM can strongly modify and even oppose the well-known ENSO impacts, like in 2005, when a strong positive AMM (associated with warm SSTs and a negative SLP anomaly over the western tropical Atlantic) led to a very active TC season with enhanced TC genesis over the Caribbean Sea and a number of landfalls over North America, under a neutral ENSO condition. On the other end, the weak TC activity during 2013 (characterized by weak negative Niño index) appears caused by a NAO-induced positive SLP anomaly with enhanced vertical wind shear over the tropical North Atlantic. During 2010, the combined impact of the three modes produced positive SST anomalies across the entire low-latitudinal Atlantic and a weaker subtropical high, leading to more early recurvers and thus fewer landfalls despite enhanced TC genesis. The study provides evidence that TC number and track are very sensitive to the relative phases and intensities of these three modes and not just to ENSO alone. Examination of seasonal predictability reveals that the predictive skill of the three modes is limited over tropics to subtropics, with the AMM having the highest predictability over the North Atlantic, followed by ENSO and NAO.


Sign in / Sign up

Export Citation Format

Share Document