scholarly journals Generation and Immunogenicity of a Recombinant Pseudorabies Virus Co-Expressing Classical Swine Fever Virus E2 Protein and Porcine Circovirus Type 2 Capsid Protein Based on Fosmid Library Platform

Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 279
Author(s):  
Muhammad Abid ◽  
Teshale Teklue ◽  
Yongfeng Li ◽  
Hongxia Wu ◽  
Tao Wang ◽  
...  

Pseudorabies (PR), classical swine fever (CSF), and porcine circovirus type 2 (PCV2)-associated disease (PCVAD) are economically important infectious diseases of pigs. Co-infections of these diseases often occur in the field, posing significant threat to the swine industry worldwide. gE/gI/TK-gene-deleted vaccines are safe and capable of providing full protection against PR. Classical swine fever virus (CSFV) E2 glycoprotein is mainly used in the development of CSF vaccines. PCV2 capsid (Cap) protein is the major antigen targeted for developing PCV2 subunit vaccines. Multivalent vaccines, and especially virus-vectored vaccines expressing foreign proteins, are attractive strategies to fight co-infections for various swine diseases. The gene-deleted pseudorabies virus (PRV) can be used to develop promising and economical multivalent live virus-vectored vaccines. Herein, we constructed a gE/gI/TK-gene-deleted PRV co-expressing E2 of CSFV and Cap of PCV2 by fosmid library platform established for PRV, and the expression of E2 and Cap proteins was confirmed using immunofluorescence assay and western blotting. The recombinant virus propagated in porcine kidney 15 (PK-15) cells for 20 passages was genetically stable. The evaluation results in rabbits and pigs demonstrate that rPRVTJ-delgE/gI/TK-E2-Cap elicited detectable anti-PRV antibodies, but not anti-PCV2 or anti-CSFV antibodies. These findings provide insights that rPRVTJ-delgE/gI/TK-E2-Cap needs to be optimally engineered as a promising trivalent vaccine candidate against PRV, PCV2 and CSFV co-infections in future.


2011 ◽  
Vol 42 (1) ◽  
pp. 115 ◽  
Author(s):  
Yu-Liang Huang ◽  
Victor Pang ◽  
Chun-Ming Lin ◽  
Yi-Chieh Tsai ◽  
Mi-Yuan Chia ◽  
...  






PLoS ONE ◽  
2015 ◽  
Vol 10 (10) ◽  
pp. e0139457 ◽  
Author(s):  
Niu Zhou ◽  
Gang Xing ◽  
Jianwei Zhou ◽  
Yulan Jin ◽  
Cuiqin Liang ◽  
...  




2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Zicheng Ma ◽  
Mengda Liu ◽  
Zhaohu Liu ◽  
Fanliang Meng ◽  
Hongyu Wang ◽  
...  

Abstract Background Porcine circovirus type 2 (PCV2) is one of the crucial swine viral pathogens, caused porcine circovirus associated diseases (PCVAD). Shandong province is one of the most important pork producing areas and bears a considerable economic loss due to PCVAD. However, there is limited information on epidemiology and coinfection rate of PCV2 with other critical swine diseases in this area, such as porcine reproductive and respiratory syndrome virus (PRRSV), classical swine fever virus (CSFV), Pseudorabies virus (PRV), and porcine epidemic diarrhea virus (PEDV). Results Overall, 89.59% serum samples and 36.98% tissue samples were positive for PCV2 specified ELISA and PCR positive for PCV2, respectively. The coinfection rates of PCV2 with PRRSV, PRV, CSFV, and PEDV were 26.73%, 18.37%, 13.06%, and 3.47%, respectively. Moreover, genetic characteristic of PCV2 were analyzed based on the cap genes showing that PCV2d is the dominant sub-genotype circulating in the province. Conclusions Our findings reveal that PCV2d, as the dominant strain, is prevailing in pig farms in Shandong province at high levels. There was a high frequency of coinfection of PCV2 and PRRSV.



2018 ◽  
Vol 63 (No. 8) ◽  
pp. 358-366
Author(s):  
LL Zheng ◽  
XH Jin ◽  
FS Wei ◽  
CQ Wang ◽  
HY Chen ◽  
...  

Porcine parvovirus, porcine pseudorabies virus and porcine circovirus type 2 can cause reproductive failure in pigs, and swine are often simultaneously infected by combinations of the three viruses. We here report the development of a SYBR Green I-based multiplex real time PCR assay for simultaneous detection of porcine parvovirus, porcine pseudorabies virus and porcine circovirus type 2. Three pairs of specific primers were designed for the porcine parvovirus-VP2, porcine pseudorabies virus-gH and porcine circovirus type 2-ORF2 genes. Viral genomes were identified based on their distinctive melting temperatures in singleplex PCR reactions. The melting temperature was 74.5 °C for the 313 bp amplicon of porcine parvovirus-VP2 gene, 87.5 °C for the 355 bp amplicon of porcine pseudorabies virus-gH gene and 80.5 °C for the 171 bp amplicon of the porcine circovirus type 2-ORF2 gene, respectively. The detection limit of the method ranged from 0.01–0.03 TCID<sub>50</sub>/ml for the three viruses. In addition, porcine parvovirus, porcine pseudorabies virus and porcine circovirus type 2 viral loads were measured in 100 field samples, and the result showed that the concordance between real-time PCR and conventional PCR was 60.42%. The sensitivity and specificity of real-time PCR were 100% and 100%, while those of conventional PCR were 40.83% and 72.22%, respectively.



2006 ◽  
Vol 13 (8) ◽  
pp. 923-929 ◽  
Author(s):  
T. Opriessnig ◽  
N. E. McKeown ◽  
K. L. Harmon ◽  
X. J. Meng ◽  
P. G. Halbur

ABSTRACT Porcine reproductive and respiratory syndrome virus (PRRSV)-induced pneumonia is a major problem, and vaccination is used to reduce losses associated with PRRSV. Porcine circovirus type 2 (PCV2) causes lymphoid depletion, and there is concern that this adversely affects the immune response. The objective of this study was to investigate the effect of PCV2 infection on the efficacy of modified live virus (MLV) PRRSV vaccine. Sixty-nine 2-week-old pigs were randomly assigned to one of seven groups of 9 to 10 pigs each. At 6 weeks of age, pigs in groups 4, 5, and 6 were inoculated intranasally with PCV2 ISU-40895. At 8 weeks of age, groups 3, 4, 6, and 7 were vaccinated with a PRRSV MLV vaccine. At 12 weeks of age, groups 2, 3, and 4 were challenged with PRRSV SDSU73. All pigs were necropsied 14 days after PRRSV challenge. PCV2-infected, PRRSV-vaccinated, and PRRSV-challenged pigs had significantly (P < 0.05) more-severe macroscopic lung lesions than did the PRRSV-vaccinated and PRRSV-challenged pigs that were not exposed to PCV2 prior to PRRSV vaccination. Nonvaccinated PRRSV-infected pigs had a significantly (P < 0.001) higher incidence of PRRSV antigen in lungs than did all other groups except the group infected with PCV2 prior to PRRSV vaccination and challenge. The nonvaccinated PRRSV-challenged group and the group challenged with PCV2 prior to PRRSV vaccination and challenge had significantly (P < 0.001) lower average daily weight gain than did the control and the vaccinated groups. This work suggests that PCV2 infection has an adverse effect on the development of protective immunity induced by PRRSV vaccine.



Sign in / Sign up

Export Citation Format

Share Document