brucella suis
Recently Published Documents


TOTAL DOCUMENTS

365
(FIVE YEARS 40)

H-INDEX

35
(FIVE YEARS 3)

Author(s):  
Imani Porter ◽  
Trinity Neal ◽  
Zion Walker ◽  
Dylan Hayes ◽  
Kayla Fowler ◽  
...  

Members of the bacterial genus Brucella cause brucellosis, a zoonotic disease that affects both livestock and wildlife. Brucella are category B infectious agents that can be aerosolized for biological warfare. As part of the structural genomics studies at the Seattle Structural Genomics Center for Infectious Disease (SSGCID), FolM alternative dihydrofolate reductases 1 from Brucella suis and Brucella canis were produced and their structures are reported. The enzymes share ∼95% sequence identity but have less than 33% sequence identity to other homologues with known structure. The structures are prototypical NADPH-dependent short-chain reductases that share their highest tertiary-structural similarity with protozoan pteridine reductases, which are being investigated for rational therapeutic development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jorge A. de la Garza-García ◽  
Safia Ouahrani-Bettache ◽  
Sébastien Lyonnais ◽  
Erika Ornelas-Eusebio ◽  
Luca Freddi ◽  
...  

Brucellae are facultative intracellular coccobacilli causing brucellosis, one of the most widespread bacterial zoonosis affecting wildlife animals, livestock and humans. The genus Brucella comprises classical and atypical species, such as Brucella suis and Brucella microti, respectively. The latter is characterized by increased metabolic activity, fast growth rates, and extreme acid resistance at pH 2.5, suggesting an advantage for environmental survival. In addition, B. microti is more acid-tolerant than B. suis at the intermediate pH of 4.5. This acid-resistant phenotype of B. microti may have major implications for fitness in soil, food products and macrophages. Our study focused on the identification and characterization of acid resistance determinants of B. suis and B. microti in Gerhardt’s minimal medium at pH 4.5 and 7.0 for 20 min and 2 h by comparative RNA-Seq-based transcriptome analysis, validated by RT-qPCR. Results yielded a common core response in both species with a total of 150 differentially expressed genes, and acidic pH-dependent genes regulated specifically in each species. The identified core response mechanisms comprise proton neutralization or extrusion from the cytosol, participating in maintaining physiological intracellular pH values. Differential expression of 441 genes revealed species-specific mechanisms in B. microti with rapid physiological adaptation to acid stress, anticipating potential damage to cellular components and critical energy conditions. Acid stress-induced genes encoding cold shock protein CspA, pseudogene in B. suis, and stress protein Dps were associated with survival of B. microti at pH 4.5. B. suis response with 284 specifically regulated genes suggested increased acid stress-mediated protein misfolding or damaging, triggering the set-up of repair strategies countering the consequences rather than the origin of acid stress and leading to subsequent loss of viability. In conclusion, our work supports the hypothesis that increased acid stress resistance of B. microti is based on selective pressure for the maintenance of functionality of critical genes, and on specific differential gene expression, resulting in rapid adaptation.


Author(s):  
Acácia Ferreira Vicente ◽  
Mateus de Souza Ribeiro Mioni ◽  
Didier Quevedo Cagnini ◽  
Márcio Garcia Ribeiro ◽  
Marcelo Fagali Arabe Filho ◽  
...  

Author(s):  
Srinivasa Nithin Gopalsamy ◽  
Aditi Ramakrishnan ◽  
Mustaf M Shariff ◽  
Julie Gabel ◽  
Skyler Brennan ◽  
...  

Abstract Automated identification systems may misidentify Brucella, the causative agent of brucellosis, which may be re-emerging in the United States as the result of an expanding feral swine population. We present a case of Brucella suis likely associated with feral swine exposure that was misidentified as Ochrobactrum anthropi, a phylogenetic relative.


2021 ◽  
Vol 8 ◽  
Author(s):  
Catherine C. Kneipp ◽  
Kate Sawford ◽  
Kate Wingett ◽  
Richard Malik ◽  
Mark A. Stevenson ◽  
...  

Brucella suis is a zoonotic disease of feral pigs that also affects pig hunting dogs, pig hunters, veterinarians and veterinary staff. In recent years the incidence of B. suis in the eastern Australian states of New South Wales (NSW) and Queensland (QLD) has increased. A cross-sectional study was conducted to document the seroprevalence, geographical extent and risk factors for B. suis in dogs at-risk of contracting the disease. Eligible dogs were those that were known to hunt or consume feral pig meat. Dogs were enrolled through private veterinary clinics and/or directly by District Veterinarians in six regions of NSW and QLD. Blood was collected by venepuncture and tested for B. suis antibodies using the Rose Bengal Test (RBT) followed by a Complement Fixation Test (CFT) if they returned a positive RBT. Owners were invited to complete a questionnaire on the dogs' signalment, husbandry including hunting practices and locations, and any clinical signs referable to brucellosis. Of the 317 dogs included in the prevalence survey, 21 were seropositive returning a survey-adjusted true seroprevalence of 9.3 (95% CI 0.45 to 18) B. suis positive dogs per 100 dogs at-risk. True seroprevalence ranged from 0 to 24 B. suis positive dogs per 100 across eastern Australia, with the highest prevalence in central west NSW and southern QLD. Adjusted for other factors, dogs that shared a household with other seropositive dogs and those that traveled away from their home regions to hunt were more likely to be seropositive. Clinical signs at presentation were not predictive of serostatus, with seropositive and seronegative dogs equally likely to present with signs consistent with brucellosis. The results obtained from this study show that B. suis exposure is relatively common in dogs that have contact with feral pigs, with one in 10 testing seropositive. Further studies are needed to understand the progression and risk of transmission from seropositive dogs.


Author(s):  
Acácia Vicente Ferreira ◽  
Mateus de Souza Ribeiro Mioni ◽  
Didier Quevedo Cagnini ◽  
Márcio Garcia Ribeiro ◽  
Marcelo Fagali Arabe Filho ◽  
...  

2021 ◽  
Vol 53 (1) ◽  
Author(s):  
Sanja Duvnjak ◽  
Željko Pavlinec ◽  
Robert Vaser ◽  
Krešimir Križanović ◽  
Mile Šikić ◽  
...  

Brucella , an extremely diverse but yet genetically highly homogenous genus of bacteria, has been a puzzle for scientists for many decades. These bacteria remain a prominent public health issue, particularly in the Balkan region. Correctly identifying and understanding the pathogen is a vital step in the epidemiology and epizootiology of any bacteria. Identification can be challenging, especially in the case of zoonotic species. This study aimed to implement fourth-generation sequencing in the typing of 11 Brucella suis strains kept in our archive and to compare this method to the classical and non-sequencing based molecular methods used to date. Classical biotyping is highly subjective and gave inconclusive results for 3 strains. Molecular methods used were multiplex PCR and RFLP methods since no one method can identify both species and biovar which is vital in the case of Brucella suis infections. Species and biovars of all the strains were successfully confirmed and in concordance with biotyping results. Oxford Nanopore long-read sequencing was used on a MinION device for next-generation sequencing (NGS). Various algorithms were implemented for genome assembly and BioNumerics 8.0 software was used for MLST identification and analysis. MLST 21 was used for biovar identification and epidemiological comparison of tested strains. The assembled genomes were 3,2 Mb in size and assembled into two chromosomes. MLST 21 analysis placed our strains into species and biovar clusters in concordance with other molecular tests used. To the extent of our knowledge, this is the first documented use of long-read sequencing in Brucella suis identification in this region. We conclude that bacteriological biotyping is outdated and host-specific identification in this genus is incorrect and that molecular characterisation is always the safer, faster and more suitable option. MinION sequencing proved to be a strong, accessible solution for species determination. Future study is required to determine how detailed genome information it can give, considering the error rate.


Author(s):  
Zhao Wang ◽  
Yanbai Wang ◽  
Huan Yang ◽  
Jiayu Guo ◽  
Zhenhai Wang

Neurobrucellosis is a chronic complication of human brucellosis that is caused by the presence of Brucella spp in the central nervous system (CNS) and the inflammation play a key role on the pathogenesis. Doxycycline (Dox) is a widely used antibiotic that induces apoptosis of bacteria-infected cells. However, the mechanisms of Brucella inhibition of microglial apoptosis and Dox induction of apoptosis are still poorly understood. In this study, we found that Brucella suis S2 strain (B. suis S2) increased calreticulin (CALR) protein levels and inhbited HMC3 cell apoptosis. Hence, we constructed two HMC3 cell line variants, one with stable overexpression (HMC3-CALR) and one with low expression of CALR (HMC3-sh-CALR). CALR was found to decrease levels of p-JNK and p-p53 proteins, as well as suppress apoptosis in HMC3 cells. These findings suggest that CALR suppresses apoptosis by inhibiting the JNK/p53 signaling pathway. Next, we treated HMC3, HMC3-CALR and HMC3-sh-CALR cell lines with B. suis S2 or Dox. Our results demonstrate that B. suis S2 restrains the JNK/p53 signaling pathway to inhibit HMC3 cell apoptosis via increasing CALR protein expression, while Dox plays the opposite role. Finally, we treated B. suis S2-infected HMC3 cells with Dox. Our results confirm that Dox induces JNK/p53-dependent apoptosis in B. suis S2-infected HMC3 cells through inhibition of CALR protein expression. Taken together, these results reveal that CALR and the JNK/p53 signaling pathway may serve as novel therapeutic targets for treatment of neurobrucellosis.


2021 ◽  
Vol 20 (1) ◽  
pp. 34-40
Author(s):  
Angel Ricardo BENCE ◽  
María Celeste MORAN ◽  
Claudio Santiago CACCIATO ◽  
Javier SOTO ◽  
Silvina Elena GUTIERREZ ◽  
...  

Here we report a case of human brucellosis due to Brucella suis in a person who worked in a small-scale pig farm. The farm had no history of clinical brucellosis, and signs of the disease were not observed upon clinical examination of the animals. Serum from all the 3 boars, 16/22 sows and 9/25 gilts was obtained for serological examination by Buffered Plate Agglutination Test (BPAT), Rose Bengal Test (RBT) and Fluorescent Polarization Assay (FPA). Bacteriological culture and Direct Fluorescence Antibody Test (DFAT) were performed in tissue samples from a seropositive boar and a sow. Specific antibodies were detected in 53 % (10/19) adult pigs, while all sampled gilts were seronegative. B. suis biovar 1 was isolated from one boar. In contrast, while the bacterium was not isolated from any tissue from a seropositive sow, it was detected by DFAT. From the bacteriological and serological evidence of B. suis endemic infection in the pig farm and the lack of preventive measures and biosecurity practices, it is concluded that the person most likely acquired the disease from the infected animals or by contact with contaminated environment in the farm.


2021 ◽  
Vol 9 (5) ◽  
pp. 904
Author(s):  
Antonia Touloudi ◽  
George Valiakos ◽  
Shaun Cawthraw ◽  
Polychronis Kostoulas ◽  
Christian Gortázar ◽  
...  

The aim of this study was to evaluate the diagnostic performance of a multiplex bead assay for the simultaneous detection of antibodies against Mycobacterium bovis, Brucella suis, and Trichinella spiralis. Sera from Eurasian wild boar of known serological status for TB (64 seropositive, 106 seronegative), Brucella (30 seropositive, 39 seronegative), and Trichinella (21 seropositive, 97 seronegative) were used for the development and evaluation of the assay. Magnetic beads coated with recombinant MPB83 antigen (TB), a whole-cell B. suis 1330 antigen, and an E/S T. spiralis antigen were used for the detection of specific antibodies using Bio-Rad Bio-Plex technology. The sensitivities (Se) and specificities (Sp) of the multiplex assay were, for M. bovis, 0.98 and 0.86; for B. suis, 1.00 and 0.97; and for T. spiralis, 0.90 and 0.99 (Se and Sp, respectively). The results show the diagnostic potential of this assay for the simultaneous detection of antibodies against M. bovis, B. suis, and T. spiralis in wild boar.


Sign in / Sign up

Export Citation Format

Share Document