Abstract
Background
Porcine circovirus type 2 (PCV2)-associated diseases are a major problem for the swine industry worldwide. In addition to vaccines, the availability of antiviral polymers provides an efficient and safe option for reducing the impact of these diseases. By virtue of their molecular weight and repetitious structure, polymers possess properties not found in small-molecule drugs. In this perspective, we focus on chitosan, a ubiquitous biopolymer, that adjusts the molecular weight and sulfated-mediated functionality could act as a efficient antiviral polymer by mimicking PCV2-cell receptor interactions.
Methods
Sulfated chitosan (Chi-S) polymers of two molecular weights were synthesized and characterized by FTIR, SEM-EDS and elemental analysis. The Chi-S solutions were tested against PCV2 infection in PK15 cells in vitro and antiviral activity was evaluated by measuring the PCV2 copy number upon application different molecular weights, sulfate functionalization, and concentration of polymer. In addition, to explore the mode of action of the Chi-S against PCV2 infection, experiments were designed to clarify whether the antiviral activity of the Chi-S would be influenced by when it was added to the cells, relative to the time and stage of viral infection.
Results
Chi-S significantly reduced genomic copies of PCV2, showing specific antiviral effects depending on its molecular weight, concentration, and chemical functionalization. Assays designed to explore the mode of action of Chi-S revealed that exerted antiviral activity through impeding viral attachment and penetration into cells.
Conclusions
These findings help better understanding PCV2-porcine cells interaction and reinforce the idea that sulfated polymers, such as Chi-S, represent a promising candidate for uses in antiviral therapies against PCV2-associated diseases.