scholarly journals New Spotted Fever Group Rickettsia Isolate, Identified by Sequence Analysis of Conserved Genomic Regions

Pathogens ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 11
Author(s):  
Dar Klein ◽  
Adi Beth-Din ◽  
Regev Cohen ◽  
Shirley Lazar ◽  
Itai Glinert ◽  
...  

The clinical features of spotted fever group (SFG) Rickettsia induced disease range from a mild to severe illness. The clinical complexity is even greater due to the fact that the disease can be caused by different species with varying degrees of virulence. Current knowledge asserts that the Israeli SFG (ISF) strain Rickettsia conorii israelensis is the only human pathogenic SFG member in Israel. Current diagnostic procedures distinguish between SFG and the typhus group rickettsiosis, assuming all SFG-positive clinical samples positive for ISF. Molecular studies on questing ticks over the past decade have uncovered the existence of other SFG strains besides ISF in Israel and the region. This study describes the first documented analysis of SFG-positive samples from Israeli patients with the goal of distinguishing between ISF and non-ISF SFG strains. We managed to identify a new Rickettsia isolate from three independent clinical samples in Israel which was shown to be an as-yet unknown SFG member, showing no absolute identity with any known Rickettsia species present in the NCBI database.

Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 228
Author(s):  
M. Nathan Kristof ◽  
Paige E. Allen ◽  
Lane D. Yutzy ◽  
Brandon Thibodaux ◽  
Christopher D. Paddock ◽  
...  

Rickettsia are significant sources of tick-borne diseases in humans worldwide. In North America, two species in the spotted fever group of Rickettsia have been conclusively associated with disease of humans: Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever, and Rickettsia parkeri, the cause of R. parkeri rickettsiosis. Previous work in our lab demonstrated non-endothelial parasitism by another pathogenic SFG Rickettsia species, Rickettsia conorii, within THP-1-derived macrophages, and we have hypothesized that this growth characteristic may be an underappreciated aspect of rickettsial pathogenesis in mammalian hosts. In this work, we demonstrated that multiple other recognized human pathogenic species of Rickettsia, including R. rickettsii, R. parkeri, Rickettsia africae, and Rickettsiaakari can grow within target endothelial cells as well as within PMA-differentiated THP-1 cells. In contrast, Rickettsia bellii, a Rickettsia species not associated with disease of humans, and R. rickettsii strain Iowa, an avirulent derivative of pathogenic R. rickettsii, could invade both cell types but proliferate only within endothelial cells. Further analysis revealed that similar to previous studies on R. conorii, other recognized pathogenic Rickettsia species could grow within the cytosol of THP-1-derived macrophages and avoided localization with two different markers of lysosomal compartments; LAMP-2 and cathepsin D. R. bellii, on the other hand, demonstrated significant co-localization with lysosomal compartments. Collectively, these findings suggest that the ability of pathogenic rickettsial species to establish a niche within macrophage-like cells could be an important factor in their ability to cause disease in mammals. These findings also suggest that analysis of growth within mammalian phagocytic cells may be useful to predict the pathogenic potential of newly isolated and identified Rickettsia species.


2020 ◽  
Author(s):  
Maria Vikentjeva ◽  
Julia Geller ◽  
Jaanus Remm ◽  
Irina Golovljova

Abstract BACKGROUND Rickettsia spp. are human pathogens that cause a number of diseases and are transmitted by arthropods, including ixodid ticks. Estonia contributes a region, where the distribution area of two exophilic tick species of known medical importance, Ixodes persulcatus and I. ricinus, overlap. The presence of the nidicolous rodent-associated I. trianguliceps has recently been shown for Estonia. Although there is no Estonian data available on human disease caused by tick-borne Rickettsia spp., the presence of three Rickettsia species in non-nidicolous ticks, albiet at very dissimilar rates, was also previously reported. The aim of this studywas to screen, identify and characterize Rickettsia species in nidicolous and non-nidicolous ticks attached to rodents. RESULTS Nymphs and larvae of I. ricinus ( n = 1004), I . persulcatus ( n = 75) and I. trianguliceps ( n = 117) attached to rodents and shrews caught in different parts of Estonia were studied for the presence of Rickettsia spp. by nested PCR. Ticks were removed from 314 small animals of 5 species (bank voles Myodes glareolus , yellow necked mice Apodemus flavicollis , striped field mice A. agrarius, pine voles M. subterranius and common shrews S. araneus) . Rickettsial DNA was detected in 8,7% (103/1186) studied ticks. In addition to R. helvetica, previously found in questing ticks, this study reports the first identification of the recently described I. trianguliceps- associated Candidatus R. uralica in west of the Ural.


2021 ◽  
Vol 6 (4) ◽  
pp. 172
Author(s):  
Nikolaos Spernovasilis ◽  
Ioulia Markaki ◽  
Michail Papadakis ◽  
Nikolaos Mazonakis ◽  
Despo Ierodiakonou

Mediterranean spotted fever (MSF) is an emerging tick-borne rickettsiosis of the spotted fever group (SFG), endemic in the Mediterranean basin. By virtue of technological innovations in molecular genetics, it has been determined that the causative agent of MSF is Rickettsia conorii subspecies conorii. The arthropod vector of this bacterium is the brown dog tick Rhipicephalus sanguineus. The true nature of the reservoir of R. conorii conorii has not been completely deciphered yet, although many authors theorize that the canine population, other mammals, and the ticks themselves could potentially contribute as reservoirs. Typical symptoms of MSF include fever, maculopapular rash, and a characteristic eschar (“tache noire”). Atypical clinical features and severe multi-organ complications may also be present. All of these manifestations arise from the disseminated infection of the endothelium by R. conorii conorii. Several methods exist for the diagnosis of MSF. Serological tests are widely used and molecular techniques have become increasingly available. Doxycycline remains the treatment of choice, while preventive measures are focused on modification of human behavior and vector control strategies. The purpose of this review is to summarize the current knowledge on the epidemiology, pathogenesis, clinical features, diagnosis, and treatment of MSF.


2021 ◽  
Author(s):  
Maria Vikentjeva ◽  
Julia Geller ◽  
Jaanus Remm ◽  
Irina Golovljova

Abstract BACKGROUND: Rickettsia spp. are human pathogens that cause a number of diseases and are transmitted by arthropods, such as ixodid ticks. Estonia is one of few regions where the distribution area of two medically important tick species, Ixodes persulcatus and I. ricinus, overlaps. The presence of the nidicolous rodent-associated I. trianguliceps has also recently been shown in Estonia. Although there is no data available in Estonia on human disease caused by tick-borne Rickettsia spp., the presence of three Rickettsia species in non-nidicolous ticks was also previously reported. The aim of this study was to detect, identify and partially characterize Rickettsia species in nidicolous and non-nidicolous ticks attached to rodents.RESULTS: Larvae and nymphs of I. ricinus (n = 1004), I. persulcatus (n = 75) and I. trianguliceps (n = 117) removed from rodents and shrews caught in different parts of Estonia were studied for the presence of Rickettsia spp. by nested PCR. Ticks were collected from 314 small animals of 5 species (Myodes glareolus (bank voles), Apodemus flavicollis (yellow necked mice), A. agrarius (striped field mice), Microtus subterranius (pine voles) and Sorex araneus (common shrews)). Rickettsial DNA was detected in 8.7% (103/1186) of the studied ticks. In addition to R. helvetica previously found in questing ticks, this study reports the first identification of the recently described I. trianguliceps-associated Candidatus R. uralica west of the Ural Mountains.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Maria Vikentjeva ◽  
Julia Geller ◽  
Jaanus Remm ◽  
Irina Golovljova

Abstract Background Rickettsia spp. are human pathogens that cause a number of diseases and are transmitted by arthropods, such as ixodid ticks. Estonia is one of few regions where the distribution area of two medically important tick species, Ixodes persulcatus and I. ricinus, overlaps. The nidicolous rodent-associated Ixodestrianguliceps has also recently been shown to be present in Estonia. Although no data are available on human disease(s) caused by tick-borne Rickettsia spp. in Estonia, the presence of three Rickettsia species in non-nidicolous ticks has been previously reported. The aim of this study was to detect, identify and partially characterize Rickettsia species in nidicolous and non-nidicolous ticks attached to rodents in Estonia. Results Larvae and nymphs of I.ricinus (n = 1004), I. persulcatus (n = 75) and I.trianguliceps (n = 117), all removed from rodents and shrews caught in different parts of Estonia, were studied for the presence of Rickettsia spp. by nested PCR. Ticks were collected from 314 small animals of five species [Myodes glareolus (bank voles), Apodemus flavicollis (yellow necked mice), A.agrarius (striped field mice), Microtus subterranius (pine voles) and Sorex araneus (common shrews)]. Rickettsial DNA was detected in 8.7% (103/1186) of the studied ticks. In addition to identifying R.helvetica, which had been previously found in questing ticks, we report here the first time that the recently described I.trianguliceps-associated Candidatus Rickettsia uralica has been identified west of the Ural Mountains.


2020 ◽  
Author(s):  
Maria Vikentjeva ◽  
Julia Geller ◽  
Jaanus Remm ◽  
Irina Golovljova

Abstract BACKGROUND Rickettsia spp. are human pathogens that cause a number of diseases and are transmitted by arthropods, including ixodid ticks. Estonia contributes a region, where the distribution area of two exophilic tick species of known medical importance, Ixodes persulcatus and I. ricinus, overlap. The presence of the nidicolous rodent-associated I. trianguliceps has recently been shown for Estonia. Although there is no Estonian data available on human disease caused by tick-borne Rickettsia spp., the presence of three Rickettsia species in non-nidicolous ticks, albiet at very dissimilar rates, was also previously reported. The aim of this studywas to screen, identify and characterize Rickettsia species in nidicolous and non-nidicolous ticks attached to rodents. RESULTS Nymphs and larvae of I. ricinus ( n = 1004), I . persulcatus ( n = 75) and I. trianguliceps ( n = 117) attached to rodents and shrews caught in different parts of Estonia were studied for the presence of Rickettsia spp. by nested PCR. Ticks were removed from 314 small animals of 5 species (bank voles Myodes glareolus , yellow necked mice Apodemus flavicollis , striped field mice A. agrarius, pine voles M. subterranius and common shrews S. araneus) . Rickettsial DNA was detected in 8,7% (103/1186) studied ticks. In addition to R. helvetica, previously found in questing ticks, this study reports the first identification of the recently described I. trianguliceps- associated Candidatus R. uralica in west of the Ural.


2020 ◽  
Author(s):  
Maria Vikentjeva ◽  
Julia Geller ◽  
Jaanus Remm ◽  
Irina Golovljova

Abstract BACKGROUND Rickettsia spp. are human pathogens that cause a number of diseases and are transmitted by arthropods, including ixodid ticks. Estonia contributes a region, where the distribution area of two exophilic tick species of known medical importance, Ixodes persulcatus and I. ricinus, overlap. The presence of the nidicolous rodent-associated I. trianguliceps has recently been shown for Estonia. Although there is no Estonian data available on human disease caused by tick-borne Rickettsia spp., the presence of three Rickettsia species in non-nidicolous ticks, albiet at very dissimilar rates, was also previously reported. The aim of this studywas to screen, identify and characterize Rickettsia species in nidicolous and non-nidicolous ticks attached to rodents. RESULTS Nymphs and larvae of I. ricinus ( n = 1004), I . persulcatus ( n = 75) and I. trianguliceps ( n = 117) attached to rodents and shrews caught in different parts of Estonia were studied for the presence of Rickettsia spp. by nested PCR. Ticks were removed from 314 small animals of 5 species (bank voles Myodes glareolus , yellow necked mice Apodemus flavicollis , striped field mice A. agrarius, pine voles M. subterranius and common shrews S. araneus) . Rickettsial DNA was detected in 8,7% (103/1186) studied ticks. In addition to R. helvetica, previously found in questing ticks, this study reports the first identification of the recently described I. trianguliceps- associated Candidatus R. uralica in west of the Ural.


Author(s):  
Matthew T Milholland ◽  
Lars Eisen ◽  
Robyn M Nadolny ◽  
Andrias Hojgaard ◽  
Erika T Machtinger ◽  
...  

Abstract Lyme and other tick-borne diseases are increasing in the eastern United States and there is a lack of research on integrated strategies to control tick vectors. Here we present results of a study on tick-borne pathogens detected from tick vectors and rodent reservoirs from an ongoing 5-yr tick suppression study in the Lyme disease-endemic state of Maryland, where human-biting tick species, including Ixodes scapularis Say (Acari: Ixodidae) (the primary vector of Lyme disease spirochetes), are abundant. During the 2017 tick season, we collected 207 questing ticks and 602 ticks recovered from 327 mice (Peromyscus spp. (Rodentia: Cricetidae)), together with blood and ear tissue from the mice, at seven suburban parks in Howard County. Ticks were selectively tested for the presence of the causative agents of Lyme disease (Borrelia burgdorferi sensu lato [s.l.]), anaplasmosis (Anaplasma phagocytophilum), babesiosis (Babesia microti), ehrlichiosis (Ehrlichia ewingii, Ehrlichia chaffeensis, and ‘Panola Mountain’ Ehrlichia) and spotted fever group rickettsiosis (Rickettsia spp.). Peromyscus ear tissue and blood samples were tested for Bo. burgdorferi sensu stricto (s.s), A. phagocytophilum, Ba. microti, and Borrelia miyamotoi. We found 13.6% (15/110) of questing I. scapularis nymphs to be Bo. burgdorferi s.l. positive and 1.8% (2/110) were A. phagocytophilum positive among all sites. Borrelia burgdorferi s.s. was found in 71.1% (54/76) of I. scapularis nymphs removed from mice and 58.8% (194/330) of captured mice. Results from study on tick abundance and pathogen infection status in questing ticks, rodent reservoirs, and ticks feeding on Peromyscus spp. will aid efficacy evaluation of the integrated tick management measures being implemented.


1999 ◽  
Vol 43 (10) ◽  
pp. 2400-2403 ◽  
Author(s):  
Michel Drancourt ◽  
Didier Raoult

ABSTRACT Rickettsiae are gram-negative, obligately intracellular bacteria responsible for arthropod-borne spotted fevers and typhus. Experimental studies have delineated a cluster of naturally rifampin-resistant spotted fever group species. We sequenced the 4,122- to 4,125-bp RNA polymerase β-subunit-encoding gene (rpoB) from typhus and spotted fever group representatives and obtained partial sequences for all naturally rifampin-resistant species. A single point mutation resulting in a phenylalanine-to-leucine change at position 973 of theRickettsia conorii rpoB sequence and present in all the rifampin-resistant species was absent in all the rifampin-susceptible species. rpoB-based phylogenetic relationships among these rickettsial species yielded topologies which were in accordance with previously published phylogenies.


Sign in / Sign up

Export Citation Format

Share Document