scholarly journals Expanding Theranostic Radiopharmaceuticals for Tumor Diagnosis and Therapy

2021 ◽  
Vol 15 (1) ◽  
pp. 13
Author(s):  
Cristina Barca ◽  
Christoph M. Griessinger ◽  
Andreas Faust ◽  
Dominic Depke ◽  
Markus Essler ◽  
...  

Radioligand theranostics (RT) in oncology use cancer-type specific biomarkers and molecular imaging (MI), including positron emission tomography (PET), single-photon emission computed tomography (SPECT) and planar scintigraphy, for patient diagnosis, therapy, and personalized management. While the definition of theranostics was initially restricted to a single compound allowing visualization and therapy simultaneously, the concept has been widened with the development of theranostic pairs and the combination of nuclear medicine with different types of cancer therapies. Here, we review the clinical applications of different theranostic radiopharmaceuticals in managing different tumor types (differentiated thyroid, neuroendocrine prostate, and breast cancer) that support the combination of innovative oncological therapies such as gene and cell-based therapies with RT.

2019 ◽  
Vol 21 (2) ◽  
pp. 76-84
Author(s):  
I. S. Trifonov ◽  
O. O. Kordonskaya ◽  
M. V. Sinkin ◽  
E. V. Grigorieva

Removal of epileptogenic lesions is an effective way to treat patients with drug-resistant epilepsy. The result of surgical treatment depends on the correct detection of pathology, definition of its boundaries. No lesion on magnetic resonance imaging is not a contraindication to surgical treatment, but requires a survey. Each of the additional methods has its advantages and disadvantages. Сomprehensive examination, analysis and comparison of positron emission tomography, single-photon emission computed tomography, magnetoencephalography, scalp and invasive electroencephalography data can significantly improve the results of surgical treatment MRI-negative epilepsy patients. Clarification of the pre-surgical evaluation algorithm will allow to optimize the use of techniques.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Natalie A. Bebbington ◽  
Bryan T. Haddock ◽  
Henrik Bertilsson ◽  
Eero Hippeläinen ◽  
Ellen M. Husby ◽  
...  

Abstract Background Computed tomography (CT) scans are routinely performed in positron emission tomography (PET) and single photon emission computed tomography (SPECT) examinations globally, yet few surveys have been conducted to gather national diagnostic reference level (NDRL) data for CT radiation doses in positron emission tomography/computed tomography (PET/CT) and single photon emission computed tomography/computed tomography (SPECT/CT). In this first Nordic-wide study of CT doses in hybrid imaging, Nordic NDRL CT doses are suggested for PET/CT and SPECT/CT examinations specific to the clinical purpose of CT, and the scope for optimisation is evaluated. Data on hybrid imaging CT exposures and clinical purpose of CT were gathered for 5 PET/CT and 8 SPECT/CT examinations via designed booklet. For each included dataset for a given facility and scanner type, the computed tomography dose index by volume (CTDIvol) and dose length product (DLP) was interpolated for a 75-kg person (referred to as CTDIvol,75kg and DLP75kg). Suggested NDRL (75th percentile) and achievable doses (50th percentile) were determined for CTDIvol,75kg and DLP75kg according to clinical purpose of CT. Differences in maximum and minimum doses (derived for a 75-kg patient) between facilities were also calculated for each examination and clinical purpose. Results Data were processed from 83 scanners from 43 facilities. Data were sufficient to suggest Nordic NDRL CT doses for the following: PET/CT oncology (localisation/characterisation, 15 systems); infection/inflammation (localisation/characterisation, 13 systems); brain (attenuation correction (AC) only, 11 systems); cardiac PET/CT and SPECT/CT (AC only, 30 systems); SPECT/CT lung (localisation/characterisation, 12 systems); bone (localisation/characterisation, 30 systems); and parathyroid (localisation/characterisation, 13 systems). Great variations in dose were seen for all aforementioned examinations. Greatest differences in DLP75kg for each examination, specific to clinical purpose, were as follows: SPECT/CT lung AC only (27.4); PET/CT and SPECT/CT cardiac AC only (19.6); infection/inflammation AC only (18.1); PET/CT brain localisation/characterisation (16.8); SPECT/CT bone localisation/characterisation (10.0); PET/CT oncology AC only (9.0); and SPECT/CT parathyroid localisation/characterisation (7.8). Conclusions Suggested Nordic NDRL CT doses are presented according to clinical purpose of CT for PET/CT oncology, infection/inflammation, brain, PET/CT and SPECT/CT cardiac, and SPECT/CT lung, bone, and parathyroid. The large variation in doses suggests great scope for optimisation in all 8 examinations.


1997 ◽  
Vol 8 (S3) ◽  
pp. 239-243 ◽  
Author(s):  
David L. Sultzer

Neuroimaging studies have contributed greatly to our understanding of Alzheimer's disease and other dementias. Computed tomography and magnetic resonance imaging reveal brain structure and aid in the diagnostic evaluation of patients with cognitive impairment. Functional neuroimaging studies use positron emission tomography, single-photon emission computed tomography, and other methods to measure regional cerebral activity, including metabolic rate, blood flow, and neuroreceptor density. Functional neuroimaging results can be useful clinically and have also been used in a variety of research applications to examine physiologic variables in neuropsychiatric illnesses.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 384
Author(s):  
Mohsin Khan A ◽  
Anuj Jain

Different types of human diseases are detected by medical image analysis which plays an important role. Studies that are developed for automated thyroid cancer classification is reviewed in this paper, especially to analyze the benign and malignant thyroid nodules features and comparisons. Hypothyroidism, hyperthyroidism, goitre and thyroid nodules (benign/malignant) are thyroid disorders. Ultrasound imaging, CT, MR imaging, nuclear medicine (NM) with positron emission tomography (PET), single photon emission computed tomography (SPECT) are the different medical techniques used to identify and classify thyroid gland abnormalities. In order to enhance the diagnosis of thyroid disease, various image processing techniques applied to thyroid ultra sound images are reviewed here. Studies based on non-clinical features for thyroid nodules classification is also discussed and reviewed.  


Sign in / Sign up

Export Citation Format

Share Document