scholarly journals Classical Chaos Described by a Density Matrix

Physics ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 739-746
Author(s):  
Andres Mauricio Kowalski ◽  
Angelo Plastino ◽  
Gaspar Gonzalez

In this paper, a reference to the semiclassical model, in which quantum degrees of freedom interact with classical ones, is considered. The classical limit of a maximum-entropy density matrix that describes the temporal evolution of such a system is analyzed. Here, it is analytically shown that, in the classical limit, it is possible to reproduce classical results. An example is classical chaos. This is done by means a pure-state density matrix, a rather unexpected result. It is shown that this is possible only if the quantum part of the system is in a special class of states.

Author(s):  
A.M. Kowalski ◽  
Angelo Plastino ◽  
Gaspar Gonzalez Acosta

We work with reference to a well-known semiclassical model, in which quantum degrees of freedom interact with classical ones. We show that, in the classical limit, it is possible to represent classical results (e.g., classical chaos) by means a pure-state density matrix.


1988 ◽  
Vol 02 (01) ◽  
pp. 103-120 ◽  
Author(s):  
AVRAHAM COHEN ◽  
SHMUEL FISHMAN

The classical and quantal behavior of a particle in an infinite potential well, that is periodically kicked is studied. The kicking potential is K|q|α, where q is the coordinate, while K and α are constants. Classically, it is found that for α > 2 the energy of the particle increases diffusively, for α < 2 it is bounded and for α = 2 the result depends on K. An approximate formula for the diffusion coefficient is presented and compared with numerical results. For quantum systems that are chaotic in the classical limit, diffusive growth of energy takes place for a short time and then it is suppressed by quantal effects. For the systems that are studied in this work the origin of the quantal localization in energy is related to the one of classical chaos.


2021 ◽  
pp. 295-309
Author(s):  
Geoffrey Brooker

“The Debye theory of solid-state heat capacities” gives a careful account of the Debye cut-off. We start by looking at a monatomic linear chain, leading to degrees of freedom and the equipartition of energy at the high-temperature (classical) limit. Reasonable approximations lead more naturally to the Born–von Karman model than to Debye, but Debye follows via a further reasonable step.


Author(s):  
Jean Zinn-Justin

The functional integral representation of the density matrix at thermal equilibrium in non-relativistic quantum mechanics (QM) with many degrees of freedom, in the grand canonical formulation is introduced. In QM, Hamiltonians H(p,q) can be also expressed in terms of creation and annihilation operators, a method adapted to the study of perturbed harmonic oscillators. In the holomorphic formalism, quantum operators act by multiplication and differentiation on a vector space of analytic functions. Alternatively, they can also be represented by kernels, functions of complex variables that correspond in the classical limit to a complex parametrization of phase space. The formalism is adapted to the description of many-body boson systems. To this formalism corresponds a path integral representation of the density matrix at thermal equilibrium, where paths belong to complex spaces, instead of the more usual position–momentum phase space. A parallel formalism can be set up to describe systems with many fermion degrees of freedom, with Grassmann variables replacing complex variables. Both formalisms can be generalized to quantum gases of Bose and Fermi particles in the grand canonical formulation. Field integral representations of the corresponding quantum partition functions are derived.


2020 ◽  
Vol 35 (27) ◽  
pp. 2050230 ◽  
Author(s):  
T. Grandou ◽  
R. Hofmann

Standard functional manipulations have been proven to imply a remarkable property satisfied by the fermionic Green’s functions of QCD and dubbed effective locality. Resulting from a full gauge invariant summation of the gauge field degrees of freedom, effective locality is a non-perturbative property of QCD. This unexpected result has lead to suspect that the famous Gribov copy problem had been somewhat overlooked. It is argued that it is not so. The analysis is conducted in the strong coupling limit, relevant to the Gribov problem.


2020 ◽  
Vol 75 (2) ◽  
pp. 131-141 ◽  
Author(s):  
Bhavya Bhatt ◽  
Manish Ram Chander ◽  
Raj Patil ◽  
Ruchira Mishra ◽  
Shlok Nahar ◽  
...  

AbstractThe measurement problem and the absence of macroscopic superposition are two foundational problems of quantum mechanics today. One possible solution is to consider the Ghirardi–Rimini–Weber (GRW) model of spontaneous localisation. Here, we describe how spontaneous localisation modifies the path integral formulation of density matrix evolution in quantum mechanics. We provide two new pedagogical derivations of the GRW propagator. We then show how the von Neumann equation and the Liouville equation for the density matrix arise in the quantum and classical limit, respectively, from the GRW path integral.


Sign in / Sign up

Export Citation Format

Share Document