entropy density
Recently Published Documents


TOTAL DOCUMENTS

228
(FIVE YEARS 24)

H-INDEX

21
(FIVE YEARS 0)

2022 ◽  
Vol 82 (1) ◽  
Author(s):  
F. G. Ben ◽  
M. V. T. Machado

AbstractWe describe the energy distribution of hard gluons travelling through a dense quark–gluon plasma whose temperature increases linearly with time, within a probabilistic perturbative approach. The results were applied to the thermalization problem in heavy ion collisions. In the weak coupling picture this thermalization occurs from “the bottom up”: high energy partons, formed early in the collision, radiate low energy gluons which then proceed to equilibrate among themselves, forming a thermal bath that brings the high energy sector to equilibrium. We see that, in this scenario, the dynamic we describe must set in around $$t \sim 0.5$$ t ∼ 0.5 fm/c after the collision in order to reach a fully thermalized state at $$t \sim 1$$ t ∼ 1 fm/c. We then look at the entropy density and average temperature of the soft thermal bath, as the system approaches (local) thermal equilibrium.



Entropy ◽  
2021 ◽  
Vol 24 (1) ◽  
pp. 43
Author(s):  
Takashi Arima ◽  
Maria Cristina Carrisi ◽  
Sebastiano Pennisi ◽  
Tommaso Ruggeri

A relativistic version of the rational extended thermodynamics of polyatomic gases based on a new hierarchy of moments that takes into account the total energy composed by the rest energy and the energy of the molecular internal mode is proposed. The moment equations associated with the Boltzmann–Chernikov equation are derived, and the system for the first 15 equations is closed by the procedure of the maximum entropy principle and by using an appropriate BGK model for the collisional term. The entropy principle with a convex entropy density is proved in a neighborhood of equilibrium state, and, as a consequence, the system is symmetric hyperbolic and the Cauchy problem is well-posed. The ultra-relativistic and classical limits are also studied. The theories with 14 and 6 moments are deduced as principal subsystems. Particularly interesting is the subsystem with 6 fields in which the dissipation is only due to the dynamical pressure. This simplified model can be very useful when bulk viscosity is dominant and might be important in cosmological problems. Using the Maxwellian iteration, we obtain the parabolic limit, and the heat conductivity, shear viscosity, and bulk viscosity are deduced and plotted.



2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Alexander P. Sobolev

AbstractThe gravitational equations were derived in general relativity (GR) using the assumption of their covariance relative to arbitrary transformations of coordinates. It has been repeatedly expressed an opinion over the past century that such equality of all coordinate systems may not correspond to reality. Nevertheless, no actual verification of the necessity of this assumption has been made to date. The paper proposes a theory of gravity with a constraint, the degenerate variants of which are general relativity (GR) and the unimodular theory of gravity. This constraint is interpreted from a physical point of view as a sufficient condition for the adiabaticity of the process of the evolution of the space–time metric. The original equations of the theory of gravity with the constraint are formulated. On this basis, a unified model of the evolution of the modern, early, and very early Universe is constructed that is consistent with the observational astronomical data but does not require the hypotheses of the existence of dark energy, dark matter or inflatons. It is claimed that: physical time is anisotropic, the gravitational field is the main source of energy of the Universe, the maximum global energy density in the Universe was 64 orders of magnitude smaller the Planckian one, and the entropy density is 18 orders of magnitude higher the value predicted by GR. The value of the relative density of neutrinos at the present time and the maximum temperature of matter in the early Universe are calculated. The wave equation of the gravitational field is formulated, its solution is found, and the nonstationary wave function of the very early Universe is constructed. It is shown that the birth of the Universe was random.



2021 ◽  
Author(s):  
Olga Soloveva ◽  
Pierre Moreau ◽  
Elena Bratkovskaya

Abstract We review the transport properties of the strongly interacting quark-gluon plasma (QGP) created in heavy-ion collisions at ultrarelativistic energies, i.e. out-of equilibrium, and compare them to the equilibrium properties. The description of the strongly interacting (non-perturbative) QGP in equilibrium is based on the effective propagators and couplings from the Dynamical QuasiParticle Model (DQPM) that is matched to reproduce the equation-of-state of the partonic system above the deconfinement temperature $T_c$ from lattice QCD. We study the transport coefficients such as the ratio of shear viscosity and bulk viscosity over entropy density, diffusion coefficients, electric conductivity etc. versus temperature and baryon chemical potential. Based on a microscopic transport description of heavy-ion collisions we, furthermore, discuss which observables are sensitive to the QGP formation and its properties.



Author(s):  
Sinya Aoki ◽  
Tetsuya Onogi ◽  
Shuichi Yokoyama

We propose a new class of vector fields to construct a conserved charge in a general field theory whose energy–momentum tensor is covariantly conserved. We show that there always exists such a vector field in a given field theory even without global symmetry. We also argue that the conserved current constructed from the (asymptotically) timelike vector field can be identified with the entropy current of the system. As a piece of evidence we show that the conserved charge defined therefrom satisfies the first law of thermodynamics for an isotropic system with a suitable definition of temperature. We apply our formulation to several gravitational systems such as the expanding universe, Schwarzschild and Banãdos, Teitelboim and Zanelli (BTZ) black holes, and gravitational plane waves. We confirm the conservation of the proposed entropy density under any homogeneous and isotropic expansion of the universe, the precise reproduction of the Bekenstein–Hawking entropy incorporating the first law of thermodynamics, and the existence of gravitational plane wave carrying no charge, respectively. We also comment on the energy conservation during gravitational collapse in simple models.



2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Ritabrata Biswas ◽  
Promila Biswas ◽  
Parthajit Roy

AbstractViscous accretion flow around a rotating supermassive black hole sitting in a quintessence tub is studied in this article. To introduce such a dark energy contaminated black hole’s gravitational force, a new pseudo-Newtonian potential is used. This pseudo-Newtonian force can be calculated if we know the distance from the black hole’s center, spin of the black hole and equation of state of the quintessence inside which the black hole is considered to lie. This force helps us to avoid complicated nonlinearity of general relativistic field equations. Transonic, viscous, continuous and Keplerian flow is assumed to take place. Fluid speed, sonic speed profile and specific angular momentum to Keplerian angular momentum ratio are found out for different values of spin parameter and quintessence parameter. Density variation is built and tallied with observations. Shear viscosity to entropy density ratio is constructed for our model and a comparison with theoretical lower limit is done.



Author(s):  
Klaus Jaffe

Synergy, emerges from synchronized reciprocal positive feedback loops between a network of diverse actors. For this process to proceed, compatible information from different sources synchronically coordinates the actions of the actors resulting in a nonlinear increase in the useful work or potential energy the system can manage. In contrast noise is produced when incompatible information is mixed. This synergy produced from the coordination of different agents achieves non-linear gains in free energy and in information (negentropy) that are greater than the sum of the parts. The final product of new synergies is an increase in individual autonomy of an organism that achieves increased emancipation from the environment with increases in productivity, efficiency, capacity for flexibility, self-regulation and self-control of behavior through a synchronized division of ever more specialized labor. Examples that provide quantitative data for this phenomenon are presented. Results show that increases in free energy density require decreases in entropy density. This is proposed as a law of thermodynamics.



2021 ◽  
pp. 2150202
Author(s):  
Mehdi Sadeghi

In this paper, the Einstein AdS black brane solution in the presence of quintessence in context of massive gravity is introduced. The ratio of shear viscosity to entropy density for this solution violates the KSS bound by applying the Dirichlet boundary and regularity conditions on the horizon for [Formula: see text]. Our result shows that this value is independent of quintessence in any arbitrary dimensions.



2021 ◽  
pp. 2150193
Author(s):  
Taha A. Malik ◽  
Rafael Lopez-Mobilia

Various proposals for gravitational entropy densities have been constructed from the Weyl tensor. In almost all cases, though, these studies have been restricted to general relativity, and little has been done in modified theories of gravity. However, in this paper, we investigate the simplest proposal for an entropy density constructed from the Weyl tensor in five-dimensional Gauss–Bonnet gravity and find that it fails to reproduce the expected entropy of a black hole.



Physics ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 739-746
Author(s):  
Andres Mauricio Kowalski ◽  
Angelo Plastino ◽  
Gaspar Gonzalez

In this paper, a reference to the semiclassical model, in which quantum degrees of freedom interact with classical ones, is considered. The classical limit of a maximum-entropy density matrix that describes the temporal evolution of such a system is analyzed. Here, it is analytically shown that, in the classical limit, it is possible to reproduce classical results. An example is classical chaos. This is done by means a pure-state density matrix, a rather unexpected result. It is shown that this is possible only if the quantum part of the system is in a special class of states.



Sign in / Sign up

Export Citation Format

Share Document