scholarly journals Generation of Negative Air Ions by Use of Piezoelectric Cold Plasma Generator

Plasma ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 399-407
Author(s):  
Dariusz Korzec ◽  
Daniel Neuwirth ◽  
Stefan Nettesheim

The negative air ions (NAI) are used for the removal of particles or droplets from the air. In this study, three types of piezoelectric cold plasma generators (PCPG), in combination with cylindrical electrostatic ion filters, are applied for NAI production. The high voltage on the filter cylinder is induced by the electric field from the piezoelectric transformer of the PCPG. To achieve the dc bias, the cylinder of the electrostatic filter is connected to the ground over ultrafast switching diodes. The ion concentrations are measured for different airflows, PCPG powers, and electrostatic filter geometries. The NAI concentration in the order of magnitude of 107 cm−3, and a negative-to-positive ion concentration ratio of over 200 is reached. The production of ozone is evaluated and the PCPG configuration with a minimum ozone production rate is proposed. The ozone concentration below 60 ppb is reached in the airflow of 90 m3/h.

2018 ◽  
Vol 33 (1) ◽  
pp. 27-46 ◽  
Author(s):  
FT Lazzerini ◽  
MT Orlando ◽  
W De Pra

2012 ◽  
Vol 178-181 ◽  
pp. 747-750
Author(s):  
Yu Guo Zhuo ◽  
Jun Liu

The concept and occurrence mechanism of negative air ions (NAI) was introduced and its health care function was described. Through observing NAI concentration of six spots in Beidaihe in China, NAI evaluation standard which has seven grades is put up and the relationship between negative air ion quantity and human health is clarified clearly.


1967 ◽  
Vol 1 (1) ◽  
pp. 1-27 ◽  
Author(s):  
C. F. Knox

The model of a stationary medium traversed by a weak plasma stream directed along a magnetic field is investigated. The usual linear treatment is adopted, and the stream is taken to be ‘cold’, with only electron (perturbation) motions considered. The objective is to assess the plane-wave growth associated with both Cerenkov and cyclotron instabilities; in particular, the dependence of the growth on frequency and angle of phase propagation. The main discussion is of the case when the stationary medium is a cold plasma in which both electron and positive ion motions are taken into account. Various expressions for the growth are derived, and numerical calculations are presented in graphical form.


2021 ◽  
pp. 131200
Author(s):  
Saili Zhang ◽  
Xiangjun Fang ◽  
Weijie Wu ◽  
Chuan Tong ◽  
Hangjun Chen ◽  
...  

2005 ◽  
Vol 5 (3) ◽  
pp. 2749-2790 ◽  
Author(s):  
U. Hõrrak ◽  
P. P. Aalto ◽  
J. Salm ◽  
J. M. Mäkelä ◽  
L. Laakso ◽  
...  

Abstract. The behavior of the concentration of positive small (or cluster) air ions and naturally charged nanometer aerosol particles (aerosol ions) has been studied on the basis of measurements carried out in a boreal forest at the Hyytiälä SMEAR station, Finland, during the BIOFOR III campaign in spring 1999. Statistical characteristics of the concentrations of cluster ions, two classes of aerosol ions of the sizes of 2.5–8 nm and 8–ca 20 nm and the quantities that determine the balance of small ions in the atmosphere have been given for the nucleation event days and non-event days. The dependence of small ion concentration on the ion loss (sink) due to aerosol particles was investigated applying a model of bipolar diffusion charging of particles by small ions. The small ion concentration and the ion sink were closely correlated (correlation coefficient 87%) when the fog events and the hours of high relative humidity (above 97%), as well as nocturnal calms and weak wind (wind speed<0.6 m s-1 had been excluded. In the case of nucleation burst events, variations in the concentration of small positive ions were in accordance with the changes caused by the ion sink due to aerosols; no clear indication of positive ion depletion by ion-induced nucleation was found. The estimated average ionization rate of air at the Hyytiälä station in early spring, when the ground was partly covered with snow, was about 4.8 ion pairs cm-3 s-1. The study of the charging state of nanometer aerosol particles (2.5–8 nm) revealed a strong correlation (correlation coefficient 88%) between the concentrations of particles and their charged fraction (positive air ions) during nucleation bursts. The estimated charged fraction of particles, which varied from 3% to 6% considering various nucleation event days, confirms that these particles are almost quasi-steady state charged. Also the particles and air ions in the size range of 8–ca 20 nm showed a good qualitative consistency; the correlation coefficient was 92%.


2007 ◽  
Vol 7 (4) ◽  
pp. 9465-9517 ◽  
Author(s):  
U. Hõrrak ◽  
P. P. Aalto ◽  
J. Salm ◽  
K. Komsaare ◽  
H. Tammet ◽  
...  

Abstract. The behavior of the concentration of positive small (or cluster) air ions and naturally charged nanometer aerosol particles (aerosol ions) has been studied on the basis of measurements carried out in a boreal forest at the Hyytiälä SMEAR station, Finland, during the BIOFOR III campaign in spring 1999. Statistical characteristics of the concentrations of cluster ions, two classes of aerosol ions of the sizes of 2.5–8 nm and 8–ca. 20 nm and the quantities that determine the balance of small ions in the atmosphere have been given for the nucleation event days and non-event days. The dependence of small ion concentration on the ion loss (sink) due to aerosol particles was investigated applying a model of bipolar diffusion charging of particles by small ions. The small ion concentration and the ion sink were closely correlated (correlation coefficient –87%) when the fog events and the hours of high relative humidity (above 95%), as well as nocturnal calms and weak wind (wind speed <0.6 m s−1) had been excluded. However, an extra ion loss term presumably due to small ion deposition on coniferous forest with a magnitude equal to the average ion loss to pre-existing particles is needed to explain the observations. Also the hygroscopic growth correction of measured aerosol particle size distributions was found to be necessary for proper estimation of the ion sink. In the case of nucleation burst events, variations in the concentration of small positive ions were in accordance with the changes caused by the ion sink due to aerosols; no clear indication of positive ion depletion by ion-induced nucleation was found. The estimated average ionization rate of the air at the Hyytiälä station in early spring, when the ground was partly covered with snow, was about 6 ion pairs cm−3 s−1. The study of the charging state of nanometer aerosol particles (2.5–8 nm) revealed a strong correlation (correlation coefficient 88%) between the concentrations of particles and positively charged particles (positive air ions) during nucleation bursts. The estimated charged fraction of particles, which varied from 3% to 6% considering various nucleation event days, confirms that these particles are almost quasi-steady state charged. Also the particles and air ions in the size range of 8–ca. 20 nm showed a good qualitative consistency; the correlation coefficient was 92%.


2008 ◽  
Vol 401 (1-3) ◽  
pp. 176-183 ◽  
Author(s):  
Kezhou Cai ◽  
Xuelan Liu ◽  
Yongjian Xu ◽  
Chong Ren ◽  
Hua Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document