scholarly journals Facile Preparation of Highly Conductive Poly(amide-imide) Composite Films beyond 1000 S m−1 through Ternary Blend Strategy

Polymers ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 546 ◽  
Author(s):  
Yanbin Wang ◽  
Huang Yu ◽  
Yongchao Li ◽  
Teng Wang ◽  
Tao Xu ◽  
...  

Highly conductive thin films with suitable mechanical performances play a significant role in modern electronic industry. Herein, a series of ternary conductive polymer composites were fabricated by incorporating carbon black (CB) into binary conductive polymer composites of poly(amide-imide) (PAI) and polyaniline (PANI) to enhance their mechanical and conductive properties simultaneously. By varying the composition of PAI/PANI/CB ternary films, the conductivity enhanced by two orders of magnitude compared with the sum of PAI/PANI and PAI/CB binary conductive polymer composites, and a high conductivity of 1160 S m−1 was achieved. The improved conductivity is mainly because much more continuous conductive networks were constructed in the ternary conductive polymer composites. With the help of the unusual morphology, the tensile strength was also enhanced by more than 80% from 21 to 38 MPa. The origin for the improved morphology was discussed for further improvement.

Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 187 ◽  
Author(s):  
Yao Huang ◽  
Semen Kormakov ◽  
Xiaoxiang He ◽  
Xiaolong Gao ◽  
Xiuting Zheng ◽  
...  

This article reviews recent advances in conductive polymer composites from renewable resources, and introduces a number of potential applications for this material class. In order to overcome disadvantages such as poor mechanical properties of polymers from renewable resources, and give renewable polymer composites better electrical and thermal conductive properties, various filling contents and matrix polymers have been developed over the last decade. These natural or reusable filling contents, polymers, and their composites are expected to greatly reduce the tremendous pressure of industrial development on the natural environment while offering acceptable conductive properties. The unique characteristics, such as electrical/thermal conductivity, mechanical strength, biodegradability and recyclability of renewable conductive polymer composites has enabled them to be implemented in many novel and exciting applications including chemical sensors, light-emitting diode, batteries, fuel cells, heat exchangers, biosensors etc. In this article, the progress of conductive composites from natural or reusable filling contents and polymer matrices, including (1) natural polymers, such as starch and cellulose, (2) conductive filler, and (3) preparation approaches, are described, with an emphasis on potential applications of these bio-based conductive polymer composites. Moreover, several commonly-used and innovative methods for the preparation of conductive polymer composites are also introduced and compared systematically.


2021 ◽  
Vol 28 (121) ◽  
pp. 32-38
Author(s):  
Hatice Aylin Karahan Toprakçı ◽  
Mukaddes Şeval Çetin ◽  
Ozan Toprakçı

In this study, carbon fibers filled flexible conductive polymer composites were fabricated. Turkish hemp was used to produce conductive carbon fibers. In order to do this, hemp fibers were carbonized under different conditions. After this step, flexible conductive composites were fabricated by using poly[styrene-b-(ethylene-co-butylene)-b-styrene] matrix and hemp-based carbon fibers. Composite films were produced by combination of solvent casting and hot pressing. Various levels of carbon fibers were used in order to determine the percolation behavior of the composites. Morphological and electrical properties of the composite films were analyzed. Electrical resistivity of the samples decreased by increasing the filler ratio.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Toshiro Yamanaka ◽  
Fumihito Arai

AbstractFor future medical microrobotics, we have proposed the concept of the electroosmotic self-propulsive microswimmer powered by biofuel cell. According to the derived theoretical model, its self-propulsion velocity is inversely proportional to the length of the microswimmer, while it is proportional to the open circuit potential generated by the biofuel cell which does not depend on its size. Therefore, under conditions where those mechanisms work, it can be expected that the smaller its microswimmer size, the faster its self-propulsion velocity. Because of its remarkable feature, this concept is considered to be suitable as propulsion mechanisms for future medical microrobots to move inside the human body through the vascular system, including capillaries. We have already proved the mechanisms by observing the several 10 μm/s velocity of 100 μm prototypes fabricated by the optical photolithography using several photomasks and alignment steps. However, the standard photolithography was not suitable for further miniaturization of prototypes due to its insufficient resolution. In this research, we adopted femtosecond-laser 3D microlithography for multi-materials composing of the conductive polymer composites and nonconductive polymer composite and succeeded in fabricating 10 μm prototypes. Then we demonstrated more than 100 μm/s velocity of the prototype experimentally and proved its validity of the smaller and faster feature.


2000 ◽  
Vol 88 (3) ◽  
pp. 1480-1487 ◽  
Author(s):  
Guozhang Wu ◽  
Shigeo Asai ◽  
Cheng Zhang ◽  
Tadashi Miura ◽  
Masao Sumita

2005 ◽  
Vol 222 (1) ◽  
pp. 187-194 ◽  
Author(s):  
Jean Fran�ois Feller ◽  
Patrick Glouannec ◽  
Patrick Salagnac ◽  
Guillaume Droval ◽  
Philippe Chauvelon

2018 ◽  
Vol 68 (3) ◽  
pp. 299-305 ◽  
Author(s):  
Yi Liu ◽  
Han Zhang ◽  
Harshit Porwal ◽  
James JC Busfield ◽  
Ton Peijs ◽  
...  

RSC Advances ◽  
2015 ◽  
Vol 5 (20) ◽  
pp. 15070-15076 ◽  
Author(s):  
Linxiang He ◽  
Sie Chin Tjong

Nano silver-decorated reduced graphene oxide (Ag–RGO) sheets were synthesized by simply dissolving graphite oxide and silver nitrate inN,N-dimethylformamide and keeping the suspension at 90 °C for 12 h.


Sign in / Sign up

Export Citation Format

Share Document